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I. INTRODUCTION

The original objective for this project was to demonstrate a new algorithm for synthesizing multirate sampled-
data control laws by application to a representative aircraft control problem. That algorithm, developed in
connection with another research effort supervised by the Principal Investigator and based on a finite-time
quadratic cost function, eventually proved unsuitable for the aircraft control problem. To complete this project
we therefore developed a new multirate control law synthesis algorithm, based on an infinite-time quadratic
cost function, along with a new method for analyzing the robustness of multirate systems, and applied both 10
the aircraft control problem

The following is a complete list of the contributions of this project:

1. A new generalized multirate sampled-data control law structure (GMCLS) was introduced. Features of
this structure include an arbitrary dynamic order and structure for the processor dynamics; and sampling
rates for all sensors, update rates for all processor states, and update rates for all actuators that can be
selected independently. (discussed in Section II)

2. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method
and solution algorithm were developed. (discussed in Section IIT)

3. A new singular-value-based method for determining gain and phase margins for multirate systems was
developed. (discussed in Section IV)

4. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm
originally intended to be applied to the aircraft problem in this project, was instead demonstrated by
application to a simpler problem involving the control of the tip position of a two-link robot arm.
(discussed in Sections I and V)

5. The GMCLS, the new infinite-time-based parameter optimization multirate control law synthesis method
and solution algorithm, and the new singular-value based method for determining gain and phase
margins were all demonstrated by application to the aircraft control problem originally proposed for this
project. (discussed in Section VI)

These five contributions are discussed in order in the following sections of this report. The first three sections
are in a summary form only and the reader is referred, for details, to preprints of journal papers in the
appendixes. The next two sections present applications of the parameter optimization techniques. The final
two sections present our conclusions and suggest topics for future research.



IL. THE GENERALIZED MULTIRATE SAMPLED-DATA CONTROL LAW STRUCTURE

A key point often ignored by the developers of multirate sampled-data control law synthesis methods is that, in
order for any such method to be practically useful, it must provide the control law designer with the flexibility
to independently choose the sampling rate for every sensor, the update rate for every processor state, and the
update rate for every actuator. Such flexibility is frequently essential for efficient utilization of real-time
control hardware, and for systems that include distributed processing and/or utilize sensors that provide only
discrete-time signals at fixed sampling rates [1]. In this section we present a general-purpose, multirate
sampled-data control law structure (GMCLS) that provides that flexibility.

To understand the GMCLS, it is necessary to establish a certain notation regarding the scheduling of sampling
and update activities for a multirate system. Figure 1 shows an example of the time lines for the sampling and
update activities of a multirate system. We define the shortest time period (STP) as the greatest common
divisor of all of the sampling, update and delay periods; and we define the basic time period (BTP) as the lcast
common multiple of all of the sampling, update and delay periods. We reserve the symbol T to represent the
STP, and the symbol P to represent the (integer) number of STP’s per BTP. Finally, we frequently make use
of a doubly-indexed independent (time) variable, so that, for example, x(m,n) represents x at the start of the
(n+1)th STP of the (m+1)th BTP, for m=0,1, ... and n=0,1, ... .,P-1.

A block diagram of the GMCLS is shown in Figure 2. ¥ represents the incoming, noise-free, continuous-
time sensor signal; v is the discrete-time sensor noise signal; and u is the continuous-time control signal. The
sampling period of the one sampler is the STP of the complete system’s sampling/update schedule. The delay
blocks are one-STP delays; and the ZOH block represents a zero-order hold.

Time Lines for Sampling/Update Activities:
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Figure 1 Example Multirate Sampling/Update Schedule



Figure 2 Generalized Multirate Sampled-Data Control Law Structure

A key feature of the GMCLS is its use of the switching matrices, Sy(n), SAn), and S, (n), for n=0,1, ... ,P-1,
to represent the variations in the sensor sampling, processor state update, and control update activities,

respectively. We define a switching matrix as a binary, diagonal matrix. Sy(n) is the switching matrix that

describes the sensor sampling activities at the start of the (n+1)th STP (of every BTP). If the ith diagonal
element of Sy(n) is 1, then the ith sensor’s signal is sampled at the start of the (n+1)th STP of every BTP, and

the sampled value, with the sensor noise v added, is immediately stored as the ith element of y. If the ith

diagonal element of Sy(n) is 0, then the same element of y is simply held at those instants. The update activities

for the processor state vector z and for the actuator hold state vector u, in Figure 1, are similarly represented

by the switching matrices S,(n), and S,(n), respectively, for n=0,1, ... ,P-1.

For a detailed discussion of the GMCLS see [1]. The key points are:

1.

3.

The switching matrices Sy(n), SA(n), and Su(n) are completely determined by the system’s sampling and
update activities schedule.

. The only unknowns are the processor matrices A,(n), B,(n), C,(n), and D,(n)

The dynamic order of the processor dynamics (i.e., the dimension of z) is arbitrary.

For design purposes, the implications of these points are the following:

1.

The GMCLS provides complete flexibility with regard to the selection of sampling rates for all sensors,
update rates for all processor states, and update rates for all acwators. The single constraint is that the
ratio of all sampling, update and delay rates must be rational, so that the complete sampling/update
schedule is periodic.

. The GMCLS provides complete flexibility with regard to the dynamic order and structure of the control

law; i.e., the input-output dynamics of virtually any multirate sampled-data control law of practical
interest can be realized with the GMCLS.

. Apart from the (significant) problem of choosing sampling and update rates, the GMCLS reduces the

control law synthesis problem to one of determining the processor matrices A,(n), B,(n), C,(n), and
D,(n), for n=0,1, ... ,P-1.



For the purpose of numerically determining A,(n), B(n), C,(n), and D,(n) it is convenient to represent the
GMCLS in the following state model form (see {1] for details):

c(m,n+1) = A(n)c(m,n) + B(n)y(m,n) (1)
u(m,n) = C (n)c(m,n) + D (n)y(m,n) ()

where
c(mn) = [2(m.n) Y(m,n) wmm]T ?3)

[I-S(n)]+S (m)A,(n) S (m)B,(n)[I-Sy(n)] 0
A (n)= 0 1-Sy(n) 0 4)
Su(m)Cy(n) S mD (M-S, (] 1-S,(n)

S,(n)B z(n)S),(n)
B.(n)= Sy(n) &)
Su(m)D(n)Sy(n)
C(n) = [S,(MC(n) S (MD(MU-Sy(M)] I-§,(n)] (©)
D (n) = [S.{n) D,(n) S,(m)]y(m.n) Q)

with u(t) = u(mn) for ail t on [(mP + m)T, (mP +n + 1)T).

The compensator parameters, A,(n), B,(n), C,(n), and D,(n), can be separated from the sampling schedule,
S.(n), Sy(n), S,(n), in an output-feedback representation of the GMCLS. Assuming a discretized model of
the plant dynamics of the form

p(m.n+1) = Ap p(m.n) + Bp u(m,n) + Ep v(m,n) @
y(m.n) = Cp p(m.n) + F, w(m.n) ®)

where v and w represent represent process and measurement noise, respectively, we can rewrite the closed
loop system in the output feedback form

[ pimn+l) 1 1 Ap O ‘J[ p(m.n) ] [ B, 0 }[ u(m,n) ] [ E, 0 }[ v(m,n) }
= 10
cmn+l) 1 L O O c(m,n) * 0o 1 c(mn+l) * 0 0 w(m,n) (10)
ymn)7 1C 0 p(m,n) 0 Fp v(im,n)
e e s Lo 0 L e ab
cmm) 1 L O [ c(m,n) 0 0 w(m,n)
Dn) Ccn) ][ p(m.n) }
Bc(n) Ac(n)

(12)

[ u(mmn) 1

—

c(mpn+1) | c(m,n)



Now the compensator matrices can be factored as follows.
[ Dyn) C(n)
BAn) Ain)

[ De(n)y Cdn) }

} Sa(n) + S3(n) (13)
Bc(n) Aqn)

where §1(n), S5(n), and S3(n) are functions of §,(n), Sy(n). and S,(n).

Equation (13) is important because it allows us to separate the unknown compensator parameters A,(n), B,(n),
C,(n), and D (n) from the known sampling schedule.

In the following section we will introduce two synthesis algorithms that can be used to determine the optimum
compensator parameters A,(n), B,(n), C,(n), and D (n).

1II. PARAMETER OPTIMIZATION CONTROL LAW SYNTHESIS METHODS

There are five well-recognized techniques for synthesizing muitirate control laws: successive loop closures,
pole placement, singular-perturbation-based methods, LQG Optimal methods, and parameter optimization
methods.

The advantages of successive loop closures are that it is easy to use, that it can (conceivably) be used to
synthesize control laws of arbitrary dynamic order and structure, and that it is particularly effective in
applications where the control loops are not strongly dynamically coupled. Its disadvantage is that its one-
loop-at-a-time approach cannot fully account for all dynamic coupling between control loops.

The problem with pole placement is determining where the closed-loop poles should be placed. Itisa
particularly difficult problem in the multirate (as compared to the single-rate) case because the STP-to-STP
dynamics of multirate systems are periodically time-varying [2]. Only the BTP-to-BTP dynamics of multirate
systems are time-invariant, and it is the poles of those dynamics that are assigned by pole-placement. In
applications, determining desirable BTP-to-BTP closed-loop poles for a typical muitirate system is difficult
because the BTP of its sampling/update schedule will typically be longer than many of its desired closed-loop
characteristic times.

Singular-perturbation-based control law synthesis methods amount to successive loop closures prefaced with a
coordinate transformation to separate the full control law synthesis problem into two or more dynamically
decoupled control law synthesis problems of different time scales. A complete decoupling requires changes in
not just the state coordinates, but in the input and output coordinates as well. Such a decoupling is not
possible in the multirate case because the input and output coordinates represent physical sensor and actuator
signals destined to be sampled/updated at different rates.

The advantages of the LQG optimal control law synthesis methods are that stabilizing control laws are
relatively easy to obtain and that the control laws for all control loops are synthesized simultaneously, taking
full advantage of all dynamic coupling between the control loops. The disadvantages are that the dynamic



order and structure of the control law is fixed, that stability robustness objectives are difficult to achieve, and
that the resulting control laws are periodically time-varying [2]-[3].

We favor para-neter optimization methods for control law synthesis for multirate systems because they offer
the principal advantages of the successive loop closures and LQG optimal synthesis methods. These
advantages are that control laws of arbitrary dynamic order and structure can be synthesized, and that control
laws for all control loops can be synthesized simultaneously, taking full advantage of all dynamic coupling
between control loops. The disadvantage of parameter optimization methods is that a numerical search is
required to determine the control law parameters.

In this section we present two parameter optimization methods for synthesizing multirate control laws. Both
utilize the GMCLS discussed in Section IL. The first is based on a finite-time quadratic cost function while the
second is based on an infinite-time quadratic cost function. Both methods solve the muitirate compensator
synthesis problem by using a gradient-type numerical search to find a set of compensator parameters that
minimize a quadratic cost function.

The multirate optimization problem is as follows.
Given:

1. The plant dynamics represented by

B @)= A, 5(0) + Bpu 50) + By, 50) (14)
¥y =C, (15)

Here p is the plant state vector, % is the control input vector, y is the noise-free measurement output
vector, and V is the noise input vector.

2. The complete sampling and update schedule for the compensator. This amounts to specifying S,(n),
Sy(n), and §,(n), for n=0,1, ..., P-1.

3. The order for the processor dynamics (the number of elements in z in (3)).

4. The desired structure (e.g., a diagonal structure) for the processor matrices, A,(n), B,(n), C,(n), and
D,(n), for n=0,1, ..., P-1.

S. The number of distinct sets of processor matrices and when they are active. The optimization algorithms
allow A,(n), B,(n), C,(n), and D,(n) to be periodically time varying. The designer can specify equality
relations among the compensator matrices. For example, if a time invariant compensator is desired then
the designer can specify that A,(0) = A,(1) = - = A(P-1), and similarly for B, ,C, and D,.

6. The power spectral density Vof the process noise v (in (8)),



7. The covariance W(n), for n=0,1, ..., P-1, of the sensor noise w (in Fig. 1). w is assumed to be a
periodically stationary, gaussian, purely random sequence, with period equal to the BTP of the
sampling/update schedule.

8. The time trand non-negative definite weighting matrices é and R for the performance index
¥re OTr1 = ~
) p®| | Q 0 ||p®)
J(tp) = E T f 1. dt (16)
s 0o R JLu®

o Lu()
where E is the expected value operator.
In the finite time optimization problem fymust be a multiple of the BTP of the sampling/update schedule.

In the infinite time optimization problem ¢ —<e and Jinfinite-time = lim J(ip)
tf —> oo

Find:

A set of processor matrices, A,(n), B,(n), C,(n), and D,(n), for n=0,1, ... ,P-1, such that the performance

index

Js& tm J@p

ff—) ©o
is minimized.

This optimization problem can be solved using either the finite-time cost function or the infinite-time cost
function.

Solution Meth in Finite-Time Function
The finite-time optimization algorithm was developed in connection with another research effort supervised by

the Principal Investigator. This method synthesizes the multirate compensator that minimizes J(tf) for a finite
i A detailed discussion of this method can be found in [1]. A summary of the solution procedure follows.

1. Determine closed-form expressions for the performance index J(¢p), and for its gradients with respect to
the elements of the processor matrices A,(n), B,(n), C,(n), and D,(n) , for n=0,1, ... ,P-1.

2. Use a gradient-type numerical optimization algorithm to determine a set of processor matrices, A,(n),
B,(n), C,(n), and Dy(n) , for n=0,1, ... ,P-1, that minimizes J(tf).

3. Obtain a steady-state solution by re-optimizing for larger and larger 7 until ¢, gets to be large compared to
all of the closed-loop system’s characteristic times.

The advantage of this method is that with tffmitc, the cost function J(tf) remains finite even if the compensator
is destabilizing. The designer does not need to find a stabilizing compensator to start the optimization process



as long as I is small enough that J(¢7) does not exceed the numerical limits of the computer performing the
optimization.

The disadvantage of this method is that the closed-form expressions that have been developed thus far for the
performance index J{t7) and for its gradients with respect to the elements of the processor matrices are very
complex and computationally intensive. In addition, we encountered difﬁcultieé when applying this method to
the aircraft control problem because our solution algorithm lacked provisions for automatic scaling of the
control law parameters (i.e., the independent variables) during the numerical search. The sheer complexity of
the finite-time performance index and gradient expressions prevented us from adding the automatic scaling
provisions that would have allowed us to apply this method to the aircraft control problem.

Solution Method Using Infinite-Time Cost Functi

Instead of modifying our existing finite-time-based algorithm to alleviate the scaling problem discussed in the
previous paragraph, we chose to develop a new infinite-time-based multirate sampled-data control law
synthesis method, based on corresponding developments for single-rate systems by Mukhopadhyay (4], for
which much simpler performance index and gradient expressions are easy to derive. For a complete
description of that method, and the solution algorithm we developed to implement it see [S]. A summary of
the solution procedure follows.

1. Find an initial stabilizing guess for the processor matrices A,(n), B,(n), C,(n), and D,(n), for
n=0,1, ... ,P-1. The finite-time solution algorithm requires an initial stabilizing compensator because
J,, is infinite when the closed loop system is unstable. From our experience, many multirate problems
can be stabilized using successive loop closures. The aircraft problem was open loop stable, and so
determining a stabilizing compensator was trivial.

2. Determine the necessary conditions (given in [5]) for the processor matrices, A,(n), B,(n), C,(n), and
D,(n), for n=0,1, ... ,P-1 to minimize J,;. These are represented by three sets of coupled matrix
equations. Two sets are Lyapunov equations, one governs the steady state covariance of the plant and
control states, and the other governs a Lagrange multiplier. The third represents the gradient of J; with
respect to the compensator parameters.

3. Use a gradient-type numerical search to solve the necessary conditions and determine a set of processor
matrices, A,(n), B,(n), C,(n), and D,(n), for n=0,1, ... ,P-1, that minimizes J .

The advantage of this method is that the gradient of J,s with respect to the compensator parameters is easy to
evaluate via the necessary conditions. For a given problem, the infinite-time optimization algorithm typically
requires fewer computations to find the optimum compensator parameters than does the finite-time
optimization algorithm even when both algorithms are initialized with the same stabilizing compensator.

Even though the finite-time and infinite-time based solution algorithms can determine optimum compensator
parameters, there is no guarantee that the design will be robust. In the following section we present a method
for analyzing the robustness of a multirate control system.

10



1V. GAIN AND PHASE MARGINS FOR MULTIRATE SYSTEMS USING SINGULAR-VALUES

There are many established methods for synthesizing muitirate compensators, see Section III, but surprisingly
few methods for analyzing the robustness of these systems. Current robustness analysis methods rely
principally on the transfer function of the system. A multirate transfer function, in the traditional sense, does
not exist, because multirate systems are periodically time varying. Without modification, established single-
rate analysis methods cannot be applied directly to multirate systems.

As part of this project, we developed an approach for extending the nyquist criterion and singular value
analysis to multirate and periodically time varying systems. For a detailed discussion of this approach,
including application of structured singular value robustness analysis to multirate systems, see {6]. In this
section we present a summary of the important ideas from that paper used to calculate gain and phase margins
of multirate systems using singular values.

As we saw in Section II, a multirate compensator can be modeled as a linear periodically time varying system
(1)-(2). Equations (1)-(2) from Section II can be written as

c(m,n+1) = A (n)c(m,n) + B (n)y(m.n) 17
u(m,n) = C(n)c(m,n) + D (n)y(m,n) (18)

This system (17)-(18) can then be transformed to an equivalent single-rate system (ESRS) by repeated
application of (17)-(18) over the BTP [7]. The ESRS has the form:

c(m+1,0) = A,c(m.0) + B,3(m.0) (19)
(m,0) = C.c(m,0) + D,¥(m,0) (20)
y(m,0) u(m,0)
where J(m0y=| 7™ dmoy=| 4D @1)
y(m,P-1) u(m,P-1)
The transfer function for the ESRS is
(") = Gp(eP )P (22)
where Gp(z")=C, (2" - A,)'B,+ D, (23)

For a detailed discussion of the ESRS, see [6]. The key points are:

1. The ESRS is a time invariant single-rate system with a sampling period of one BTP and the unique
property that the inputs are time correlated and the outputs are time correlated.

11



2. In general Gp(zP ) has a very complicated form, but it can be shown that if the system is time invariant
with G(z) equal to a constant, then GP(ZP ) will also be constant and block diagonal with G(z) on the
diagonal.

3. The ESRS allows us to manipulate time invariant and periodically time varying systems (e.g. multirate)
as if they were both time invariant. The state space or transfer functions descriptions can be used to
calculate input-output relations for systems in series or in a feedback loop just as in classical control [8].
For example, to calculate the ESRS of a multirate compensator in series with a time invariant plant, we
would calculate the ESRS of the plant and compensator individually and then combine them using block
diagram arithmetic.

4. Kono [9] has shown that if the ESRS is stable then the multirate system from which it was derived will
be stable.

5. Single-rate robustness analysis techniques can be applied to the ESRS as long as the results are
interpreted in light of the fact that some of its inputs and outputs are time correlated.

Generalized gain and phase margins for the ESRS (and equivalently the muitirate system) can be calculated
using singular value analysis. If we assume a plant uncertainty of the form

G(Dacuat = CONominaike® 24)
then the ESRS plant uncertainty has the form
G actuat = P2 Nominatke®)p (25)
(ke’®)p = diag[ke/®, ke/®, . . . , ke/®] with P blocks
[Recall that if H(z) is constant, p(ZP ) is block diagonal with H(z) on the diagonal. ]
The multirate system is guaranteed to remain stable whenever
B((ke’®)1-1) < g(I + Gp(z")) on the nyquist contour (26)

Traditional gain margins can be obtained by setting 8 = 0 and solving (26) for k. Phase margins can be found
by setting k = 0 and solving (26) for 6.

As with most singular value robustness analysis methods, the & and © found using (26) are conservative. If,

however, ke/® is diagonal, the conservativeness associated with (26) can be reduced by diagonally scaling
Gp(zF). We used Osborne’s method of preconditioning matrices to increase the lower bound for Gp(zl) and
thus to improve our estimate of the gain and phase margins.

12



V. APPLICATION OF THE FINITE-TIME-BASED PARAMETER OPTIMIZATION ALGORITHM TO
A TwWO LINK ROBOT ARM CONTROL PROBLEM

The original proposal for this project called for the finite-time-based parameter optimization multirate sampled-
data control law synthesis method of Section I to be applied to an aircraft control system design problem.
That method and a solution algorithm to implement it had been previously developed as part of another
research effort supervised by the Principal Investigator. Due to the solution algorithm’s lack of adequate
provisions for automatic scaling of the control law parameters (i.c., the independent variables) during the
numerical search, we were not able to apply it successfully to the aircraft control problem. We maintain,
however, that the problems we encountered with it were a consequence of problems with the solution
algorithm and are not necessarily indicative of problems with the synthesis method.

In this section we therefore present an application of the finite-time-based multirate sampled-data control law
synthesis method to a two-link robot arm control problem. The robot arm application demonstrates the utility
of the method without being so poorly conditioned that automatic scaling of the control law parameters was
required during the numerical search.

The two-link robot arm system we dealt with is shown in Figure 3. The first link is long and massive, for
large-scale slewing motions. The second is short and lightweight so high-bandwidth control of the tip position
can be achieved with a relatively small motor at the second joint. The pin joint, rotational spring, and
rotational damper at the midpoint of the first link model flexibility in that link. The control inputs are the motor
torques, Ty and T,. The measured outputs are the joint angle © and the tip position 8. The spring constant (k)
and damping coefficient (b) values (in Fig. 3) yield an open-loop vibration mode with a 10 Hz natural
frequency and 1% damping.

Parameters: Mass Length

L, 05kg 05m

L, 05kg 05m  k=37.33 N/rad
Ly 004kg 02m b=0.012N s/m

The natural frequency of the vibration mode is 10 hz.

Inputs: Torques Ty and T,
Outputs: 6 and &

Figure 3 Two-Link Robot Arm System

13



We used the finite-time-based multirate control law synthesis method of Section II to synthesize muitirate
sampled-data control laws for this system. Our performance objective was high-bandwidth control of the tip
position &, and it is intuitively clear that this can best be accomplished, given a fixed real-time computation
capability, by trading low-bandwidth control at T} for high-bandwidth control at T;. Thus, for an 8-to-1
control bandwidth ratio, we chose the sampling/update rate for 8 and T, to be 8-times faster than that for 6 and
T;. For comparison purposes, we designed also corresponding analog and single-rate sample-data control

laws.

TLA Control Laws

For the TLA system, the tip position (8) responses to a commanded step change in the tip position obtained
with the analog, single-rate and multirate control laws we synthesized are shown in Figure 4. See (1] for
additional results and details. A summary description of those designs follows.

LOR Analog Design The LQR Analog response was obtained with an analog LQR (full state feedback)
control law that is optimal with respect to a quadratic performance index that yields 0.7071 damping
(§; = &, = 0.7071) and an 8-to-1 ratio of characteristic frequencies (®,5/®, = 8) for the two closed-loop

modes.

Third-Order Analog Successive Loop Closures Design The Third-Order Analog Successive Loop Closures
response was obtained with a successive loop closures control law that consisted of a single lead network from
6 to Ty, and two identical cascaded lead networks from & to 7. The gains, and zero and pole locations were
chosen to yield dominant closed-loop poles coincident with those obtained with the LQR Analog control law.

Third-Order Multirate Tustin Design The Third-Order Multirate Tustin response was obtained with a
multirate sampled-data control law obtained by discretizing the lead compensators of the Third-Order Analog
Successive Loop Closures design using Tustin’s method [10]. The 8-to-T; control-loop sampling/update rate
is a factor of 8 times the characteristic frequency of the lower-frequency closed-loop mode from the Third-
Order Analog Successive Loop Closures design; and the 8-t0-T, sampling/update rate is the same multiple of
the characteristic frequency of the higher-frequency closed-loop mode from the Third-Order Analog
Successive Loop Closures design.

Optimized Third-Order Multirate Tustin Design The Optimized Third-Order Multirate Tustin response was
obtained with a control law synthesized by the finite-time-based multirate sampled-data control law synthesis
method of Section ITI. This control law is the Third-Order Multirate Tustin control law, but with its gains and
its pole and zero locations optimized to minimize the same performance index as is minimized by the LQR
Analog control law.

Analog Third-Order Design The Analog Third-Order response was obtained with a third-order, generally-
structured, analog control law synthesized using Ly’s Sandy algorithm [11]-[12] to minimize the same
performance index as is minimized by the LQR Analog control law.

14
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Multirate First-Order, Second-Order & Third-Order Designs The Multirate First-Order, Second-Order, and
Third-Order responses were obtained with multirate, generally-structured, sampled-data control laws
synthesized by the finite-time-based multirate sampled-data control law synthesis method of Section III to
minimize the same performance index as is minimized by the LQR Analog control law. The sensor sampling
and actuator update rates are the same as in the Third-Order Multirate Tustin control law. In the First-Order
case, the update rate for the one processor state is the same as the faster sensor-sampling/actuator-update rate.
In the Second-Order case, one processor state is updated at the faster rate and the other at the slower rate. In
the Third-Order case, two processor states are updated at the faster rate and one is updated at the slower rate.

Single-Rate Third-Order Design Finally, the Single-Rate Third-Order control law response was obtained
with a single-rate, generally-structured, sampled-data control law synthesized by the finite-time-based multirate
sampled-data control law synthesis method to minimize the same performance index as is minimized by the
LQR Analog control law. Its single sampling/update rate was chosen to require the same average number of
computations per unit time for real-time operation as is required for real-time operation of the Multirate Third-
Order control law.

Conclusions

The TLA results in Figure 4 demonstrate some of the benefits of multirate control. For example, the tip
position overshoot (8) with the multirate compensator is much less than with its equivalent single-rate
counterpart. But more importantly, the results demonstrate that the finite-time-based multirate sampled-data
control law synthesis method can be used to synthesize multirate control laws of arbitrary structure and
dynamic order, with arbitrarily selected sampling rates for all sensors, and update rates for all processors states
and actuators. The third-order multirate compensator, for example, uses two different update rates for the
processor states, inputs and outputs, and a general compensator structure with full coupling between inputs,
outputs and processor states of different rates.
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V1. APPLICATION OF THE INFINITE-TIME-BASED PARAMETER OPTIMIZATION ALGORITHM
TO A YAW DAMPER AND MODAL SUPPRESSION SYSTEM FOR A COMMERCIAL AIRCRAFT

A practical application of multirate control can be found in aircraft. The limited computational resources of
aircraft dictate that their control systems must function efficiently. Multirate control allows the designer to
efficiently allocate these resources by trading slow sampling and update rates in control loops associated with
low-bandwidth control functions for fast sampling and update rates in control loops associated with high-
bandwidth control functions. In this section we consider a particular application of multirate control: a
combination yaw-damper and modal suppression system for a commercial aircraft.

In the interest of weight reduction for fuel efficiently, aircraft are being constructed with less structural rigidity.
Structural vibration modes can be excited in such aircraft by wind gusts or by movements of control surfaces.
These vibrations affect not only the structural integrity of the fuselage but also passenger ride quality. In the
lateral direction, such vibrations are often induced by rudder activity associated with the yaw-damper. A
“modal suppression system” can be added to the yaw-damper loop to suppress these vibrations. The modal
suppression system would traditionally be designed by successive loop closures.

In this section we describe the design of a multirate combination yaw-damper and modal suppression system
for a commercial aircraft using the infinite-time-based multirate compensator synthesis algorithm and
robustness analysis technique discussed in Sections IIT and IV. For comparison purposes we also designed
corresponding analog and single-rate sample-data systems.

The goal for each compensator design was to increase the damping of the dutch-roll mode to 0.6, and to
decrease the covariance of lateral accelerations at the nose and aft of the airplane, particularly those components
associated with low frequency flexible modes. The performances of the compensators were compared by
comparing the closed loop dutch-roll damping, the covariances of lateral accelerations at the nose and aft of the
aircraft due to a unit covariance gaussian white noise disturbance, and the PSD plots of the lateral accelerations
at the nose and aft of the aircraft for either a white noise disturbance (analog designs) or a gust pulse
disturbance (sampled-data designs).

Open Loop Aircraft
A block diagram of the airplane model is shown in Figure 5. The lateral dynamics model consists of 4 rigid

body modes (heading, spiral, dutch roll and roll) and 11 flexible modes. Actuator/power control units for the
aileron and rudder are modeled as second-order lags.

30(35) 20(25)
G(S)Rudder = (55 30)(s + 35) CSAileron ={5320)(s + 25) @n

The lateral gust disturbances are filtered by a second-order Dryden gust model

___17.496s +2.1617
21.836s52 + 9.3458s + 1

G(s) (28)
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Figure 5 Block Diagram of the Open Loop Airplane Model

The poles associated with the spiral and heading modes were compensated with static gain feedback before the
yaw-damper/modal suppression systems were designed, because these modes, which laid close to the origin
and were controllable with the rudder, created numerical difficulties for Sandy (the optimization program used
to design the Fourth-Order Analog compensator discussed in later in this section). The spiral mode was
compensated by feeding back roll and roll-rate to the aileron. Heading was compensated with heading to
rudder feedback. In what follows we refer to the airplane model with spiral and heading modes compensated
as the uncompensated airplane (no dutch-roll compensation).

The lateral accelerations of the uncompensated airplane are measured by Nynose and Nyaft. The PSD plots of
lateral accelerations for the uncompensated airplane are shown in Figure 6. A yaw-damper/modal suppression
system should reduce the total area under this curve (covariance of lateral acceleration). In particular, it should
reduce the peak at = 0.5 Hz (near the dutch-roll mode) and the peaks between 3 Hz and 6 Hz (low frequency
flexible modes). Values of the dutch-roll damping, and the Nynose and Nyaft covariances for the
uncompensated airplane are given in Table 1.
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Table 1  Resuits for Analog Designs with a Unit Covariance Gaussian White Noise
Lateral Disturbance
Design Dutch-Roll Damping Nynose Cov. Nyaft Cov.
(ft3/sec?) (ftfsec?)
Uncompensated I 0.08 5.1 21.8
Analog Yaw-Damper Only | 0.6 5.0 6.1
LQR Analog 0.6 2.4 3.1
Fourth-Order Analog 0.55 2.5 2.4

Three analog compensators were designed: a yaw-damper only system, a full state feedback yaw-
damper/modal suppression system, and a fourth-order yaw-damper/modal suppression system. PSD plots of
Nynose and Nyaft for the analog designs are shown in Figure 8; Nynose and Nyaft covariances are
summarized in Table 1. These analog designs provide a base line for comparison with the sampled-data

designs and were used to determine appropriate values for cost weighting matrices. Following is a summary
of these designs.
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Analog Yaw-Damper Only Design The yaw-damper only design uses static feedback from  to §,, using a
AN K o We chose & 4mper such that the dutch-roll damping was 0.6 using classical root locus. While the
peak on the PSD plot associated with the dutch-roll mode (=0.5 Hz) has been reduc :d significantly from the
uncompensated case, the peak near 3 Hz has increased (see Fig. 8). This is the problm with using static gain
feedback. As you “press” on one peak of the PSD another “pops” up due to the input coupling between the
dutch-roll and low frequency flexible modes.

LOR Analog Design The LQR design uses full state feedback to improve the dutch-roll damping and reduce
the covariance of Nynose and Nyaft. The compensator was designed to minimize the following cost function.

T

N 0001 O N
Jy= lim E [y] [ ][’""“}+ 1.652 (29)
ff— = Nyaft 0 0.004] L Nyaft

Weighting matrices for (29) were chosen such that the covariances of Nynose and Nyaft were reduced from
the yaw-damper only case by the same percent, and the dutch-roll mode had a damping of 0.6. Figure 8
shows that the LQR design significantly reduces the dutch-roll peak as well as the peaks associated with the
flexible modes.

Fourth-Order Analog Design The Fourth-Order Analog compensator is a yaw damper/modal suppression
system designed using Sandy (11]. A block diagram of this compensator is shown in Figure 7. This design
minimizes the same cost function as the LQR design (29) with the weighting on §, adjusted to achieve close to
the desired 0.6 dutch-roll damping. An unexpected result is that the covariance at Nyaft for the Fourth-Order
Analog design is actually better than for the LQR Analog design. This is a consequence of adjusting the cost
function weighting matrices to achieve the desired the dutch-roll damping.

l Lateral Disturbance

Nynose
Nyaft

> Uncompensated Airplane

Fourth- Order Anaiog

Compensator rﬁ

Figure 7 Block Diagram of Airplane with Fourth-Order Analog Compensator
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Three sampled-data compensators were designed: a single-rate yaw-damper only system, a fourth-order
multirate compensator and a fourth-order single-rate compensator. Both fourth-order compensators were
synthesized using our infinite-time-based mulitirate control law synthesis algorithm to minimize the same cost
function as the LQR Analog design.

The sampled-data compensator designs were based on a maximum sample/update rate of 50 Hz. This is 10
times the rudder actuator roll off frequency and 8 times faster than the fastest flexible mode which contributes
significantly to the PSD of the lateral acceleration. This sample rate is close to the slowest practical sample rate
which could be used.

PSD plots for the sampled-data designs were generated using a gust pulse (a rectangular pulse) at the
disturbance input, as opposed to the gaussian white noise used for the analog designs. For the analog
designs, the PSD plots were based on transfer functions from the disturbance input to Nynose and Nyaft.
Multirate compensators are periodically time varying so that transfer functions for them, in the traditional
sense, do not exist. For this reason, we used the gust pulse disturbance input to generate the PSD plots for the
sampled-data designs.

The gust pulse input PSD has a connection to the white noise input PSD. For a time invariant continuous
system, the PSD plots generated using either gaussian white noise or a continuous impulse input are exactly
the same. This is because the Fourier transform of the impulse response is the same as the bode plot, and the

PSD of gaussian white noise is a constant. If a continuous system, given by x(t) = Ax(t) + Bu(r), is such that
Tp
B=u Je'A'Bd‘r (30)

where u can be selected arbitrarily and T, is much shorter than the observation time, then a continuous impulse
can be approximated by a pulse of duration T, and magnitude u. For the airplane problem addressed in this
project, (30) is satisfied for

Tp = (0.02 seconds and u = 50 ft/sec. 3D

PSD plots of Nynose and Nyaft for the sampled-data designs are shown in Figure 11. Nynose and Nyaft
covariances for these designs are summarized in Table 2. Following is a summary of the sampled-data
designs.

Single-Rate Yaw-Damper Only Design The Single-Rate Yaw-Damper Only design is similar to the Analog
Yaw-Damper design except that a sampler is used at the output \y and a zero order hold is used at the input J,.
Both the sampler and zero order hold operate at 50 Hz. The performance of the sampled-data yaw damper is
very close to that of the analog damper (Figs. 8 and 11).
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Multirate Fourth-Order Design The multirate compensator is shown in Figure 9. It was designed to
minimize the same cost function as the LQR Analog design with the weighting on 8, adjusted to achieve the
desired dutch-roll damping. The compensator uses two sampling/update rates. The rudder is updated and the
lateral accelerations are sampled at 50 Hz; \ is sampled at a slower rate, 12.5 Hz, because it is composed
primarily of the slow dutch-roil mode.

Two of the processor states for this multirate compensator are updated at the fast rate, 50 Hz, and two are
updated at the slow rate, 12.5 Hz. Initially a compensator was designed in which all of the processor states
were updated at 50 Hz, but we found that there was no noticeable performance degradation if two of the
processor states were updated at the slower rate. Slowing the update rate of these states reduces the number of
computations required per unit time for real time implementation of the multirate compensator.

Table 2 Results for Sampled-Data Designs with a Unit Covariance Gaussian White

Noise Lateral Disturbance
Design Dutch-Roll Damping Nynose Cov. Nyaft Cov.
(fi2/sec?) (ft¥/sec?)
Uncompensated 0.08 5.1 21.8
Single-Rate Yaw-Damper Only 0.6 43 5.4
Multirate Fourth-Order 0.6 3.6 4.7
Single-Rate Fourth-Order 0.6 3.5 4.7
‘l Lateral Disturbance
\ -0.08s ,
5 . Nynose  1-0.02¢
ZOH Uncompensated Airplane .
—{zoA Noah__ 1005

Multirate Fourth-Order
T=0.02s o Compensator <
€1.¢, updated at T=.02s <
€4,64 updated at T=.08s

Figure 9 Block Diagram of Airplane with Multirate Fourth-Order Compensator
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Single-Rate Fourth-Order Design The Single-Rate Fourth-Order compensator is shown in Figure 10. The
sampling rate for this compensator is 28.6 Hz. That rate was chosen such that the number of multiplications
recaired per unit time for its real time operation is the same for the multirate compensators. The cost function

used to design the single-rate compensator was the same as was used to design the Multirate Fourth-Order
compensator.

l Lateral Disturbance

A4 T=0.035s »

é
‘ Uncompensated Airplane Nynose 100353,

Nyaft  T=0.035s,

Single-Rate Fourth-Order
Compensator

T=0.0358 |

All states updated at T=0.035s

Figure 10 Block Diagram of Airplane with Single-Rate Fourth-Order Compensator
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Gain and Phase Margins for led-Da si

Gain and phase margins at the control input (8,) were evaluated for the Multirate Fourth-Order and Single-Rate

Fourth-Order compensators using the robustness analysis methocs of Section IV. Table 3 summarizes the
traditional gain and phase margins for the these compensators. Figure 12 shows the region of guaranteed
stability for simultaneous changes in k and 6 for both compensators.

Table 3 Traditional Gain and Phase Margins

Design Gain Margin (db) [0 = 0} | Phase Margin (Deg) [k = Odb]
Multirate Fourth-Order [-3.8, 7.1] +32°
Single-Rate Fourth-Order [-3.3, 5.5] +27°

System with Multirate Compensator is

35k stable for Gain and Phase combinations .
inside this region System with Single Rate Equivalent

Compensator is stable for Gain and

Phase combinations inside this region _|

301

Phase 6 in Deg

10+

4 -2 0 2 4 6 8 10
Gain £ in db

Figure 12 Stability Region for Simultaneous Gain and Phase Uncertainty for Fourth-
Order Sampled-Data Compensators
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Conclusions

Figures 8 and 11 show that the yaw-damper/modal suppression systems significantly decrease the covariance
of the lateral acceleration at the nose and aft of the airplane while attaining the desired 0.6 dutch-roll uamping.
It should be no surprise that the analog compensators out performed the sampled-data compensators, because
the sampled-data compensators were designed using a slow sampling rate. Still, both fourth-order sampled-
data compensators reduce the peak accelerations of Nynose and Nyaft by 175% and 50% respectively over the
yaw-damper only systems. The performance of the Single-Rate Fourth-Order compensator is nearly as good
as that of the multirate compensator, but, for input gain and phase uncertainty, the multirate compensator is
more robust than the single-rate compensator.

VII. SUMMARY AND CONCLUSIONS

In this report we have presented a methodology for designing multirate control systems. We have introduced
the Generalized Multirate Control Law Structure (GMCLS) which allows complete flexibility with regard to
the dynamic order and structure of the control law, and with regard to the sampling rates for all sensors and the
update rates for all processor states and actuators. We have presented two parameter optimization multirate
control law synthesis algorithms, one based on an infinite-time cost function and the other based on a finite-
time cost function, which can be used to find optimum values for the GMCLS parameters. We have presented
a technique for determining gain and phase margins for multirate systems. Finally, we have demonstrated our
methodology by applying it to the design of a two link robot arm control system and to the design of a
combination yaw-damper and modal suppression system for a commercial aircraft. The application to the
aircraft control problem, in particular, demonstrates that the methodology can be applied to design problems of
a scale that one might expect to encounter in practice.

VIII. SUGGESTIONS FOR FUTURE RESEARCH

The results presented here demonstrate a methodology for multirate digital control system design that is
applicable to practical problems. Before this methodology can be routinely applied in practice, however, the
following need to be developed:

1. A means for directly synthesizing robust multirate control laws.

2. Numerical optimization algorithms incorporating auto-scaling of the independent variables and other
features that more effectively deal with the practical difficulties of parameter optimization applied to
multirate control law synthesis.

With regard to direct synthesis for robustness, there are several possibilities. One would add the multiple-
plant-condition design for robustness ideas of Ly [10]-{1 1]. A second would add direct nonlinear robustness
constraints on the control law parameters during the numerical optimization. The latter approach has been
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successfully applied by Mukhopadhyay (4] to synthesize robust single-rate control laws by parameter
optimization.

In addition to theoretical work, a second major research effort in multirate control needs to be directed toward
experimental research. Now that a bonafide multirate control system design methodology has been developed,
we strongly believe that further substantive progress in the field can best be made in conjunction with bonafide
hardware applications of that methodology in the laboratory.
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. INTRODUCTION

Even in this age of fast. low-cost microprocessors there remain several important motivations
for muitirate sampiing in sampled-data control systems. One need only consider large space
structure control problems to realize that the cost, bulk, and weight of real-time computing
hardware continues to be an important control system design issue. Multirate sampling provides
the opportunity to allocate sampling rates, and thus real-time computing power, more efficiently.
In two-time-scale control problems, for example, muitirate sampling allows siow sampling in
control loops associated with low-bandwidth control functions to be traded for fast sampling in

those associated with high-bandwidth control functions.

As with microprocessors, the costs of analog-to-digital and digital-to-anaiog converters are aiso
computation-rate dependent. Multirate sampling thus provides another opportunity to reduce
hardware costs because the computation rates required of analog-to-digital and digital-to-analog
converters frequently depend upon their sampling rates. Multirate sampling can even be used to
reduce the total number analog-to-digital and/or digital-to-analog converters required by a system,

by sample-dependent scheduling of multiple conversion tasks to a lesser number of conversion

devices.

A third “motivation” for muitirate sampling is becoming increasingly important: sometimes
multirate sampling is the only choice. This situation can arise when an apriori decision has been
made to include in a system a sensor that provides a discrete-time signal at a fixed sampling rate. A
head position control system for a computer disk drive is a good example of such a system. The
disk head, which is suspended atop the rotating disk, includes a sensor that reads the head position
directly from certain diametrically-spaced segments on the disk. The sensor's sampling rate is thus
fixed by the disk's rotation speed. To increase the control bandwidth beyond that dictated by that

sampling rate, a second, faster-rate sensor must be added.

A key point often ignored by developers of multirate control law synthesis methods is that
these motivations for multirate sampling dictate also certain flexibilities required to meet the needs
of engineering practice. Specifically, multirate control law synthesis methods, to meet the needs of

engineering practice, must allow the sampling rates for all sensors, the update rates for all processor
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states, and the update rates for all actuators to be specified independently. The one generaily
accepted restriction, with regard to these rates, is that the ratio of all combinations of sampling and
update rates must be rational, so that the compiete sampling/update schedule wiil aiways be

beriodic. (We assume that all sampiing and update events are synchronized to the same clock.

The asvnchronous case is treated elsewhere {1].)

Time iines representing such a periodic sampling schedule are shown in Fig. 1. We define the
Basic Time Period (BTP) of such a schedule as the least common muitiple of ail of its sampling and
update periods. The BTP is the period of repetition of the sampling/update schedule. We define
the Shortest Time Period (STP) as the greatest common divisor of all of its sampling and update
periods. We reserve the symbol P to represent the (integer) number of STP's per BTP, and we shall
frequently use a double-indexing scheme for the independent variable so that, for exampie, x(m.n)

represents x at start of the (n+1)th STP of the (m+1)th BTP, form=01,...,andn=0,...,P-1

There are five well-recognized methods for synthesizing muitirate sampled-data control laws:
successive loop closures, pole placement, the singular perturbation method, the LQG (linear
quadratic Gaussian) method, and parameter optimization methods. Successive loop closures (2] is
arguably the most important because it is the single one of the five that is widely used in industry.
The advantages of successive loop closures are that its one-loop-at-a-time approach requires no
new multirate synthesis techniques, and that the sampling/update rate for each control loop can be
specified independentty. The problem with successive loop closures is that its one-loop-at-a-time

approach cannot fully account for all dynamic coupling between control loops.

Pole placement [3,4,5,6,7} for multirate systems has received considerable recent attention in the
wake of reports on the capacity for periodically time-varying output feedback controllers to place
closed-loop poles. In Ref. 3, for example, it is shown that given any controllable and observable
continuous-time plant with m inputs, it is always possible to construct a periodically time-varying,
pure-gain, output feedback control law that places the closed-loop poles arbitrarily, provided that
the outputs are all sampled at a suitably chosen single sampling rate 1/Tg, and that the inputs are

updated at the rates N1/ T, .. ., Nm/To, where the N;j are certain positive integers.
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The problem with pole placement for muitirate systems is the same as with pole placement for
single-rate svstems: how to determine where the closed-loop poies should be placed? Itisa
particularly difficult problem in the muitirate case because multirate systeras are periodically time
varving {2,8]. The periodicity of muitirate systems implies that their eigenstructure can only be
defined based on their (time-invariant) BTP-to-BTP dynamics. Determining desirable closed-loop
poles for a muitirate system is typicaily difficult because the BTP of a muitirate system is typically

much longer than the characteristic times of many of its faster dynamics.

Singular perturbation control law synthesis methods [9,10,11,12,13,14,15] were first developed
for continuous-time control systems to take advantage of the multiple-time-scale dynamics that
often occur in control systems. It would seem that an extension to multirate sampled-data systems
should follow naturally, given that a principal motivation for multirate sampiing has always been

to take advantage of those same muitiple time scales, but that has not been the case in practice.

The problem is the singular perturbation method's inherant dependence on a coordinate
transformation to separate the full control law synthesis problem into two (or more) dynamically
decoupled control law synthesis problems of different time scales. Such a coordinate
transformation is the first step in control law synthesis by the singular perturbation method. The
state coordinates are easily decoupled because they represent only the plant's internal dynamics.
The input and ouput coordinates cannot be so manipulated because they represent the plant’s
external sensor and actuator signals. Consequently, during the second control law synthesis step,
when the control laws for the different-time-scale state vector components are synthesized
separately, every control input vector element and every sensor ouput vector element remains
coupled to every state coordinate so that, just as with successive loop closures, all dynamic coupling

between control loops cannot be accounted for.

Various schemes have been developed to circumvent this difficuity. None have been
completely successful. In Ref. 13, for example, a state feedback control law is synthesized by the
singular perturbation method, and the lack of a completely decoupling transformation gives rise to
a requirement for the siow component of the plant state vector to be estimated between slow-

sampler updates, and a requirement for every control input to be updated at every

sampling/update instant.
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The advantage of the LQG method {2,16,17,18] for multirate sampied-data control law synthesis
is that the control laws for all control loops are synthesized simultaneously, taking into account all
dvnamic coupling between control loops. The disadvantages are the same as with the LQG method
for continuous-time control law synthesis: that practical performance and stability robustness
objectives are often difficult to achieve via the minimization of a quadratic performance index, and
that the resulting control laws are often unnecessarily complex. LQG control laws are even less
desirable in the multirate as compared to the single-rate case because multirate Kalman filter and
LQOR state feedback gains are periodically time-varying [2]. In short, LQG multirate sampled-data

control laws can provide a useful benchmark for performance comparisions, but they are not

practical for applications.

Parameter optimization methods (2,19} for mulitirate sampled-data control law synthesis
combine the principal advantages of the LQG and successive loop closures synthesis methods. They
allow the synthesis of multirate sampled-data control laws of practical structure, and
simultaneously account for all dynamic coupling between control loops. The typical parameter
optimization method requires that the control law structure and its parameters to be optimized be
prescribed. A numerical search is used to determine values for those parameters such that a
performance index is minimized, possibly subject to constraints on those parameters. The

disadvantage of parameter optimization methods is that they inevitably require a numericai search

to determine the control law parameters.

A new parameter optimization method for synthesizing multirate sampled-data control laws is
described in Sec. III of this paper. It is the second generation of the method described in Refs. 2 and
20. Unlike its predecessor, which accomodates only partial state feedback control laws, this new
method accomodates a general, dynamic, multiple-input multiple-output control law structure.
This new control lawstructure is described in Sec. II of this paper. Section IV describes an

application of this new method to a design problem involving a two-link robot arm model.

Conclusions are given in Sec. V.

II. CONTROL LAW STRUCTURE
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This section describes the muitirate sampled-data control law structure in Fig. 2. In Fig. 2, yis
the noise-free, continuous-time sensor signal, v is the discrete-time sensor noise signal, and U is
the continuous-time control signal. The one sampler in Fig. 2 operates at the sampling rate 1/T,
where T is the STP of the system's complete sampiing/update schedule. The Delay blocks are one-

STP delays. The ZOH block is a zero-order hold.

The sensor sample-and-hold dvnamics are represented by

v(mn+1) = (I - Sy(n)] y(m,n) + Sy(n) y(m,n) M

where v is the sensor signal hold state vector. The matrix Sy(n) is the sensor switching matrix for
the (n+ 1)th STP. We define a switching matrix as a diagonal matrix with 1 or 0 at every diagonal
position. If the ith diagonal element of Sy(n) is 1, the continuous-time signal from the ith sensor is
sampled at the start of the (n+ 1)th STP of every BTP and that sampled value is immediately stored
as the ith element of y; otherwise, the same element of y is held at those instants. The key point is

that y always contains the most recent sampled sensor data.

The processor dynamics are represented by

z(mn+1) = {I - S,(n)]z(m,n) + S;(n) (A;(n) z(m,n)

+ B(n) {[I - Sy(n)ly(m,n) + Sy(n) y(m,n)}} ()

a(m,n) = C,(n) z(m,n)

+ D0 (1 - Sy(W] Fim,n) + Sy(n) y(m,n)) 3)

where z is the processor state vector, and 4 is the processor output vector. The matrix S,(n) is the
processor state switching matrix. If the ith diagonal element of S,(n) is 1, the ith processor state is
updated at the start of the (n+1)th STP of every BTP; otherwise, the same element of z is held at
those instants. The matrices A,(n), B,(n), C,(n), and D,(n) are the processor state model matrices,
whose determination constitutes the control law synthesis problem. Note that a nonzero D,(n)

results in direct feedthrough of sensor data to d(m,n).
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The control signal update-and-hold dvamics are represented by
Giran+1) = {1 - Sy(n)l u(m,n) + Sy(n) 4 (m,n) 4)
where 1 is the control signal hold state vector. The matrix S,(n) is the control signal switching
matrix. If the ith diagonal element of Sy(n) is 1, the ith element of u is updated at the start of the

‘n+ Dth STP of everv BTP; otherwise the same element of u is held at those instants.

Finally, the continuous-time control signal u is generated by
1) = (I - Sy(m] F(m.n) + Sy(n) t(m,n) (5)
for all ton {(mP + n)T, (mP + n + )T).
The advantage of the control law structure of (1) through (5) is that it can be used to represent

virtuaily any sampied-data control law structure of practical interest. Its form, however, is not

standard. Straightforward algebra, applied to (1) through (5), yields the following more standard

form:
clmn+1) = An) c(m,n) + B.(n) y(m,n) (6)
u(m,n) = C.(n) c(m,n) + D¢(n) y(m,n) @)
where
c(m,n) = [z(m,n) u(m,n) y(m,n)|T (8)
[I-S,(n)] +S,(n) Ay(n)  Sy(n) By(n) [I-Sy(n)] 0
Adn) = 0 1= Sy(n) 0 9)
Su(n) C,(n) Sy(n) Dy(n) (1 -Sy(n)]  1-Sy(n)
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S,(n) B,(n) Sy(n)
B.(n) = Sy(n) (10)
Syu(n) D,(n) Sy(n)

Clm = 1Sy(n) Co(n)  Syln) Do) (1= Sy(m)] [ = Syln)] an
De(n) = [Sy(n) Dy(n) Sy(n)] (12)
with
() = u(m,n) (13)

for all t on {(mP + n)T, (mP + n + V).

11I. PARAMETER OPTIMIZATION METHOD

This section describes a parameter optimization control law synthesis method for the control
law structure of Sec. II. It is a generalization of the similar method for state feedback control laws
described in Refs. 2 and 20, and incorporates also the multiple-plant-condition design for
robustness ideas of Ref. 21. The approach involves a numerical search to determine the processor
matrices, A,(n), B,(n), C,(n), and D,z(n), for n=0, ..., P-1, such thata quadratic performance index
is minimized. That approach has been criticized in the past because of (1) the difficulties of
achieving practical performance and stability robustness objectives via the minimization of a

quadratic performance index, and (2) difficuities related to the convergence of the numerical search.

The proposed method addresses those criticisms in several ways. First, to enable synthesis for
robustness to plant parameter variations, the performance index is defined over muitiple plant
conditions. This simple idea has been a key to the success of the popular Sandy (21,22,23,24,25,26}
algorithm for synthesizing robust continuous-time control laws. Second, to improve the
convergence of the numerical search, the performance index and its gradients with respect to the
control law parameters are calculated exactly, at every iteration, using closed-form expressions.

Third, so that a stabilizing initial guess for the control law is not required, and to eliminate
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problems with destabilizing control laws encountered during the search, a finite-time performance
index is used. Finally, to lessen the difficulties of achieving practical performance and stability
robustness objectives via the minimization of a quadratic performance index, linear and noniinear

constraints can be imposed on the control law parameters.
The continuous-time plant dynamics at plant condition i are assumed to be represented by:

B (0 = A BP0 + Biy G0 + By, WO (14)

70w = & pn (15)

r

where f)(i) is the plant state vector, i is the control input vector, ?m is the sensor output vector,

and W is a stationary, zero mean, gaussian white noise input vector of known power spectral

density.

The performance index is assumed to be

N

{ U~ [A® ~(i)
1 ipmy Qo ||pT®
J Bl J {G“’m} { . ﬁ“)l ‘:am(t)}dt} (16)

i=1

where Ny, is the number of plant conditions; E is the expected value operator; t; is the final time
and is a multiple of the BTP of the system’s complete sampling/update schedule; and Q“) and RV

are the state and control weighting matrices for the ith plant condition and are non-negative

definite matrices.

Based upon the description of the continuous-time plant dynamics in (14) and (15), a complete
description of the complete system's sampling/update schedule, the performance index in (16), and
the control law in (6) through (13), closed-form expressions for the performance index J and for its

gradients with respect to the processor matrices A,(n), B,(n), C,(n), and Dy(n), for n=0, ..., P-1, are
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derived in Refs. 19 and 27. Those derivations and the resulting closed-form expressions are
lengthy, and will not be repeated here. The key points are that the resuiting expressions are closed-
‘orm. and that the number of computations required for their evaluation is independent of t;. The
single restriction for those expressions to be valid is that the state transition matrix for the BTP-to-
BTP closed-loop system must be diagonalizable {19]. That is nota serious restriction because that

matrix is rarely nondiagonaiizable in practice.

Thus far nothing has been said about synthesizing other than periodically time-varying control
laws. To that end, the performance index and gradient derivations in Refs. 19 and 27 assume that

the processor matrices are constrained to satisfy

" Dyn) Cuin) 1 Mz—l Dyr) C,(r)
| L= a(n,r) (17)
L B,(n) A,(n) I = B A
with M € {1, ..., P}, and with the a functions constrained to satisfy
1ifp=q
anp) ang) ={ g it b2 a8)

Equations (17) and (18) constrain the number of different sets of processor matrices to M. The
function or,n) determines which set of processor matrices is active at the (n+ 1th STP. Equation

(18) guarantees that only one set of processor matrices is active per STP.

Based on the description of the continuous-time plant dynamics in (14) and (15), a compiete
description of the complete system's sampling/update schedule, the performance index in (16), the
control law in (6) through (13), the constraint relations in (17) and (18), and the closed-form
expressions for the performance index J, and for its gradients with respect to the processor matrices
A,(r), B,(r), C,(r), and D,(r), for r=0, ..., M-1, in Refs. 19 and 27, we have developed a computer
algorithm to numerically determine a set of processor matrices that minimizes J. A numerical
search is used to determine the processor matrices Rz(r), I_Bz(r), éz(r), and bz(r), forr=90,...,M-1,
given an initial guess for those matrices. The NPSOL noniinear programming algorithm is used

for the numerical search. NPSOL [28] is a powerful nonlinear programming package with good
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convergence properties as a result of its use of exact performance index and gradient evaluations at
every iteration. In addition, NPSOL accomodates linear and/or nonlinear constraints on the
independent variables. This means that linear and/or nonlinear constraints on the control law
parameters can be combined with the usual performance index minimization objectives to achieve

practical performance and stability robustness objectives.

Additionai important features of this new synthesis algorithm include automatic discretization
of the continuous-time plant model and of the continuous-time performance index [27]. These are
important design features because they effectively decouple the sampling/update rates selection
problem from the problem of determining a suitable performance index. This means that the
performance index can be determined first, based on a continuous-time design, and that this new

aigorithm can then be used to determine a muitirate sampled-data design that minimizes the same

performance index.

In summary, the inputs required to apply this new synthesis algorithm are the following:

A state model description of the continuous-time plant dynamics at each of the Ny

plant conditions.

+ State and control weighting matrices for the performance index at each of the N, plant

conditions.

¢ The final time t; for the performance index.

¢ The power spectral density of the continuous-time white process noise at each of the

Np plant conditions.

+ A complete description of the complete system's sampling/ update schedule.

+ The integer M and the o functions that constrain the periodicity of the processor

matrices via (17) and (18).



« The desired dynamic order and structure for the processor matrices.

+  The covariance matrix for the discrete-time sensor noise at each of the N plant

conditions.

« A compiete description of all linear and/or nonlinear constraints to be imposed on the

elements of the processor matrices.
» An initial guess for the processor matrices.

A disadvantage of most parameter optimization control law synthesis methods is that they
require a stabilizing initial guess for the control law. That is not the case with this method because
of its finite-time performance index. The finite time ensures that the performance index and its
gradients will be finite whether or not the closed-loop system is stable. A disadvantage of the finite

time is that a steady-state solution, i.e., for

2 jim j (19)

tg — oo

Jss

cannot be obtained directly. A steady-state solution is easily obtained, in practice, however, by
choosing a finite time t¢ that is large compared to the characteristic times of all of the closed-loop

system's poles. Because the number of computations required to evaluate the performance index

and gradient expressions of Refs. 19 and 27 does not depend upon t;, this can be done without

penalty in terms of the computation time for the numerical search.

In practice, because digital computers cannot store arbitrarily large finite numbers, a steady-state

solution usually cannot be obtained by simply initially setting t; to a large value. Instead, it is

usually necessary to complete first (i.e., when the current best guess for the control law parameters
is poor) an optimization for a small t;, and to then re-optimize, for larger and larger t;, until t; gets

to be large compared to the characteristic times of all closed-loop poles.
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The final kev issue regarding this new synthesis algorithm concerns the requirement that the
structure of the processor matrices be specified. The key point is that the imposed structure should
guarantee that the free parameters for the numerical search constitute an independent set with
respect to the control law's input-output dynamics. When the processor dynamics in (2} and (3) are
considered, with the constraints in (17) and (18) in effect, it is straightforward to see that the
complete set of the elements of A, (1), B,(r), C,(r) and D,(r), forr =0, ..., M-1, do not constitute
such an independent set because, for example, an arbitrary change in one element of EZ(O) can be
compensated for by changes to the elemets of C,(0), and to the other elements of B,(0), such that the

processor's input-output dynamics are unchanged.

Thus, additional structure, or, equivalently, additionai constraints, must be imposed on the
clements of the processor matrices to guarantee that the free parameters tor the numerical search
constitute an independent set with respect to the control law's input-output dynamics. In practice,
a suitable set of such constraints can frequently be determined based on “classical” control law

structures (e.g., combinations of lead and lag compensators and notch filters).

More generally structured control law can, of course, also be accomodated. What constitutes an
optimal structure for the processor matrices for the general case is a topic of current research. We
have successfully applied the following structure (shown for the n-is-even case) for the particular

case where the constraints in (17) and (18) are applied with M = 1 (the time-invariant case):

0 1
32(0)=blockdiag{ O V=102 20)
_ by bim
B,(0) = (21)
bnl : brm
1 1
co=f @™ 22
Cpl Cm
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D,(0) = (23)

The appendix shows that the (m+ p)n+ mp ;, @;, byj ¢;and d;; parameters of this structure
constitute an independent set with respect to the control law's input-output dynamics (for any
non-trivial sampling/update schedule) provided that no eigenvalues 0; * j; of the processor

dynamics are repeated.

IV. EXAMPLES

This section describes the design of a tip position control system for a planar two-link robot
arm. The robot arm system is shown in Fig. 3. The first link is long and massive, for large-scaie
slewing motibns. The second is reiatively short and lightweight, so that high-bandwidth control of
the arm’s tip position can be achieved using a relatively small motor at the second joint. The pin
joint, rotational spring and rotational damper at the midpoint of the first link models flexibility in
that link. The second link is assumed to be rigid. The motor torques Ty and T; are the control
inputs, and it is assumed that only the joint angle 6 and the tip position & are measured. The
linearized dynamical equations for this system for small € - 8 and small ¢ - € are easily derived.
The spring constant (k) and damping coefficient (b) values (in Fig. 3) were chosen based on that

model to achieve 1 percent damping and a 10 Hz natural frequency for the open-loop vibration

mode.

Figures 4 through 6 show the closed-loop arm responses, based on the linearized arm
dynamics, to a step change in the commanded tip position with nine different control laws. The tip

position (3) responses are shown in Fig. 4. The simultaneous control torque (T; and T,) responses

are shown in Figs. 5 and 6. The nine different control laws are briefly described as follows:

LQR Anaiog: The continuous-time LQR (full-state-feedback) control law that minimizes

te

. _1_ 2 k) Ty Ty
]= t: in. 2% ‘[ B2[6? + (pd)*] + (Tlmx}z + (sz’j dt (24)
0
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with

B=32rad™ (25)
’
p=1l4rad/m (26)
Tymax = 0.00335 N-m Q7
Timax/ T2max = 8 (28)

The Tymax value is the T torque that achieveso = 2t rad/secin 1 sec with 8(t) = ett) = 0 ando(0) = 0.
The Tymax/ T2max value represents a typical ratio of peak motor torques at the respective joints. The
B and p values were chosen by trial and error to achieve the closed-loop poles in Table 1. Note that
the ratio of the characteristic frequencies of the rigid-body closed-loop pole pairs is eight; and that
the characteristic frequency of the faster closed-loop rigid-body pole pair is a factor of five less than

the characteristic frequency of the closed-loop vibration mode.

Third-Order Analog Successive Loop Closures: The third-order, continuous-time, successive loop
closures control law in Fig. 7, which consists of a single lead compensator in the 6-to-Ty loop and
twin, cascaded lead compensators in the &-to-T; loop. The closed-loop poles for this design are in

Table 2. Note that the rigid body and vibration mode closed-loop poles match those of the LQR
Analog design.

Third-Order Multirate Tustin: A multirate sampled-data approximation to the Third-Order
Analog Successive Loop Closures design obtained via Tustin’s approximations of the continuous-
time transfer functions in Fig. 7. The sampling/update rates (in samples/updates per second) of the
8-to-T; and 8-to-T, loops are eight times the characteristic frequencies (in cycles per second) of the

slow and fast, respectively, rigid body closed-loop pole pairs from the Third-Order Analog

Successive Loop Closures design.



Optimized Third-Order Multirate Tustin: The same as the Third-Order Multirate Tustin design,
but with the lead compensator gain, zero, and pole locations optimized, by the paramether
optimization control law synthesis method of Sec. Iil. to minimize the same performance index as
in the LQR Analog design. To synthesize this control law, continuous-time process noise and
discrete-time sensor noise inputs were added to the robot arm model. The former were taken to be

white noise disturbance torques wq and w», coincident with the respective control torques, with

rwilt) T 4.9x10™ 0
E(l ..

] Wg(t)] [wq(t) wa(D)]) = { 0 Léx107 } 8(t-1) 29)

where & is the Dirac delta function. The latter were taken to be stationary, purely random

sequences, vy and va, for the 6 and & measurements, respectively, with

(m,n) 1x107 0
[[vi m,n) [vitmn) vomn)}} = [ 8.1x10 .}

d

Multirate Third-Order: The same as the Optimized Third-Order Multirate Tustin design, but using
the third-order, generalized, time-invariant structure in (20) through (23) for the processor
matrices. Just as with the Optimized Third-Order Multirate Tustin design, two of the processor

states are updated at the faster sampling/update rate, and the third is updated at the slower
sampling/update rate.

Multirate Second-Order: The same as the Multirate Third-Order design, but using the second-
order, generalized, time-invariant structure in (20) through (23) for the processor matrices. One of

the processor states is updated at the faster sampling/update rate, and the other is updated at the

slower sampling/update rate.

Multirate First-Order: The same as the Multirate Third-Order design, but using the first-order,
generalized, time-invariant structure of (20) through (23) for the processor matrices. The one

processor state is updated at the faster sampling/update rate.
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Single-Rate Third Order: The same as the Multirate Third-Order design, but single-rate, with the

single sampling/update rate chosen to yield the same number of reai-time computations per unit

time as the Multirate Third-Order design.

Analog Third-Order: The continuous-time equivalent to the Multirate and Single-Rate Third-
Order designs. The processor matrices have the same structure as in the Multirate and Single-Rate
Third-Order designs. The control law was synthesized using the Sandy aigorithm {21} to minimize

the same performance index as in the Multirate and Single-Rate Third-Order designs.

The LQR Analog responses in Figs. 4a, 5a and 6a constitute the optimal responses for the
performance index in (24), assuming full state feedback, no process or sensor noise, and infinitely
fast sampling. The Third-Order Analog Successive Loop Closures responses in the same figures

have low tip position overshoot, but inciude also a relatively large contribution from the vibration

mode (see especially Figs. 5a and 6a).

The Third-Order Multirate Tustin responses in Figs. 4a, 5a and 6 are unacceptable. This is

somewhat suprising, but not totally unexpected given the (low) factor-of-eight sampling/update

rate-to-characteristic frequency ratio for this design.

The Optimized Third-Order Multirate Tustin responses in Figs. 4a, 5a and 6a are acceptable, and
demonstrate that the parameter optimization control law synthesis algorithm of Sec. III can be used

to optimize the parameters of classically-structured control laws.

The Multirate Third-Order, Second-Order and First-Order responses in Figs. 4b, 5b and 6b
demonstrate that the same parameter optimization control law synthesis algorithm can be used to
synthesize multirate sampled-data control laws having a prescribed dynamic order and a

prescribed, but general, structure, with apriori specified sampling/update rates for all sensors,

processor states, and control inputs.

The Single-Rate Third-Order and Analog Third-Order responses in the same figures put the
multirate responses in perspective. The Single-Rate Third-Order control law is the single-rate

equivalent to the Multirate Third-Order control law because it (1) was synthesized to minimize the
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same performance index, using the same process and sensor noise characteristics; and (2) requires

the same number of computations per unit time for real-time operation.

The Analog Third-Order responses in the same figures are the responses that would have been
obtained with the Multirate Third-Order control law and Singe-Rate Third-Order concrol laws if

sampling and update rates were not an issue, and very fast sampling and update rates were

evervwhere used.

V. CONCLUSIONS

With the possible exception of successive loop closures, the muitirate sampied-data control law
svnthesis methods avaiiable today fail to provide the designer with sutficient flexibility to prescribe
sensor sampling rates and processor state and control input update rates. A new parameter-
optimization-based method for synthesizing multirate sampled-data control laws of arbitrary
dynamic order that provides that flexibility is described in this paper. This new method, described
in Sec. IIl, determines, by numerical optimization, the free parameters of the general purpose
muitiple-input, multiple-output, sampled-data control law structure in Fig. 2, to minimize a
quadratic performance index, possibly subject to linear and/or nonlinear constraints on those
parameters. A stabilizing initial guess for the control law is not required because the performance

index is finite-time. To enable the synthesis of robust control laws, the performance index can be

defined over muitiple plant conditions.

An application of this new method to the design of a tip position control system for a sixth-
order, two-link robot arm was described. Multirate sampled-data control laws of various dynamic
orders synthesized by various methods were compared to confirm that the new synthesis method
can be used to synthesize multirate sampled-data control laws having a prescribed dynamic order

and structure, with apriori specified sampling/update rates for all sensors, processor states, and

control inputs.
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APPENDIX A. SUPPORTING MATHEMATICS

Consider the control law in (1) through (5). Suppose that the constraints in (17) and (18), with
\M=1, are in effect, so that the processor matrices are constrained to be time-invariant. Suppose that

the processor matrices. A,(0), B,(0), C,(0) and D,(0), are further constrained to have the forms in

:20) through (23). Finally, to guarantee a nontrivial sampling/update schedule, suppose that the
sensor, processor state, and actuator switching matrices satisfy

rp-1 :

det| Zsy(“) | =0 (31
L n=) ‘

[ P-1 7

det| Y s.(n) | # 0 (32)
L n=) t

P :
det| 3 su(n) [ =20 (33)
_n=l

We will show that the (m+p)n+pm 0, ®, by;, Cjj and djj elements of the controi law then constitute

an independent set with respect to that control law’s input-output dynamics if and only if A,(0) has
no repeated eigenvalues.

We begin by noting that, with (31), (32) and (33) in effect, it is straightforward to see that the
independence in question does not depend whatsoever on the sensor, processor state, or actuator
switching matrices. Therefore we consider only the special case where Sy(n), S,(n) and Su(n), for
n=0, . . . P-1, are identity matrices. The control law then reduces to

2(m,n+1) = A,(0) zZ(m,n) + B,(0) y(m,n) (34)

u(m,n) = C,(0) z(m,n) + D,(0) y(m,n) (35)
where u(m,n) is defined in (13).

Consider first the control law

z(k+1) = A z(k) + By(k) (36)
u(k) = C z(k) + D y(k) (37
where
7 Y1 ujy
zZ= E y = E us= E (38)
y Up
Ay 0 0
A= 0 0 39)
0 0 An
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and B, C and D have the forms in (21) through (23). So that the control law's impuise response wil

be purely real, the A;'s and the corresponding columns of C and rows of B must be either real, or
must occur in complex-con‘ugate pairs, and D must be pureiy reai.

Lemma: The (m+p/n+pm A;, by, cjj, and d;; parameters (counting a real element as one parameter,
and a complex conjugate pair of elements as two parameters) of the control law in (36) and (37)
constitute an independent set with respect to that control law's input-output dynamics if and only
if Aza for 1.

Proof: Consider the related control law

zk+1) = A z(k) + B v(k) (40)
ulk) = C z(k) (41)
with
ro- -7
_ (S8 Cin
C= (42)
Ep, Em

Its input-output dynamics are represented by

n

- q Cy By
H(z) =C(z1-A)"" B = —_ (43)
Z—M

i=

where (_Zi is the i th column of C, and Bj is the ith row of B. The i, by and Eij parameters of this
control law are dependent with respect the control law's input-output dynamics if and only if, for

an arbitrary change in one, the others can be changed so that H(z) is unchanged.

Case 1: No repeated A; 's.

From (41), for the case of no repeated X, 's, it is straightforward to see that when one of the Ay's is
changed by an arbitrary amount, it will not be possible to change the remaining A;, bj; and Eij
elements so that H(z) is unchanged. But when byj is muitiplied by a nonzero but otherwise
arbitrary o, we can multiply the remaining elements of B; by o, and divide C;by @, so that H(z) is

unchanged. Thus, the A;, b;j and Cjj parameters of the control law in (40) and (41) are dependent
with respect to that control law's input-output dynamics.

If, however, one element of every column of C is fixed, as is the case in the C matrix of (22), it is
similarly straightforward to see that it will not be possible to compensate for an arbitrary change in

any A;, bj; or ¢;; element by changing the remaining A;, bjj and c;j elements so that H(z) is

unchanged. Thus, for the case of no repeated A;'s, with one element of every column of C fixed,
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the A;, byj and c;; parameters of the control law in (40) and (41) constitute an independent set with
respect to that control law’s input-output dynamics.

Case 2: Repeated A's.
Consider again the control law in (40) and (41), but this time suppose that A;=A». That control law's
input-output dynamics are represented by

n

- - ~1 E] B1+EzBQ EiBi

H(z) =C(zI-AY '"B=—"7T""" + E (44)
Z—‘A1 Z—ki

i=3

From (42), it is straightforward to see that, with or without one element of every column of C fixed,
the remaining bj; and Eij elements of 61, By, C,, and B; can be changed to compensate for an
arbitrary change in any one element of C4, By, Cy, or By so that H(z) is unchanged. Thus, for the

-ase of repeated A;'s, with or without one element of every column of C fixed, the A;, b;;and Ev’.j

parameters of the controi law of (40) and (41) are dependent with respect to that control law’s input-
output dvnamics.

General Case: We conclude that the (m+p)n &;, by;, and c;; parameters of the control law in (36) and
(37), with D= 0, constitute an independent set with respect to that control law’s input-output

dynamics if and only if A;#A;, for i#j. A nonzero D matrix simply adds pm parameters to that set.

Theorem: For the control law in (1) through (5); with the constraints in (17) and (18), with M=1, in
effect, so that the processor matrices are constrained to be time-invariant; with A,(0), B,(0), C,(0)

and D,(0) further constrained to have the forms in (20) through (23); and assuming that the sensor,

processor state, and actuator switching matrices satisfy (31) through (33); the (m+p)n+pm oy, @;, by,
cij and dj; elements of that control law constitute an independent set with respect to that control

law's input-output dynamics if and only if A,(0) has no repeated eigenvalues.

Proof: The control law in (34) and (35) has the same number of free parameters as the control law
in (36) and (37), and the two are related by the similarity transformation x=M z, where

1
M = block diag { -7 [

oijo; 1 ] ,
2j @y ’

—ojy -1 |7 1=l n2) (45)

with o; = RE(M) and w; = Im}(k,)
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Closed-Loop | Damping | Characteristic
Pole Rato Frequency
Rigid Body -1.10£71.10 0.71 0.25Hz
Rigid Body -8.81+;8.83 0.71 2.0Hz
Vibradon Mode | -0.649 +;62.8 0.01 10 Hz

Table 1 LQR Analog Design Closed-Loop Poles

Closed-Loop | Damping | Characteristc
Pole Ratio Frequency
Rigid Body -1.10%;1.11 0.71 0.25Hz
Rigid Body —8.88+;8.84 0.71 2.0Hz
Vibration Mode | -1.35+;63.9 0.02 10Hz
Compensator -10.5 - 1.7Hz
Compensator | -33.2+;34.0 0.70 7.6 Hz
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Time Lines for Sampling/Update Activities:

[ [

T Time (Seconds) 25T

o

4T ST

0 3T 6T 9T 12T  IST 18T  2IT 24T
—  —sTP |
BTP o

Fig. | Example Multirate Sampling/Update Schedule
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Fig. 2 Multirate Sampied-Data Control Law Structure
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Parameters: Mass Length

Ly 05kg 05m

L, 05kg 05m  k=37.33 N/rad
L, 004kg 02m b=0.012N:s/m

The natural frequency of the vibration mode is 10 hz.
Inputs: Torques T, andT>
Outputs: 6 and

Fig. 3 Two-Link Robot Arm
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1991 ACC Reduced Order Multirate Compensator Svnthesis 1

INTRODUCTION

In many cases a muitirate compensator can provide better perrormance than a singie rate
~ompensator requiring the same number of computatons. Berg, for exampie, was able to
reduce the steady state RMS response of states and contwolis for a SIMDI€ mass-spring-mass
system neariy 20% by using a muitirate compensator over a singie rate compensator.
Numerous other exampies have been provided in the literature by Berg {3]-[5], Amirt {1]-
t2}, and Yang {17]. While muidrate compensators can provide improved performance over
singie rate compensators. they are also, in general. more compiicated to design.

The compiexity of multirate compensators stems from the fact that thev are by nature
ime varving, penodicaily time varving for any practcal application. Not only must
.esigners cnoose muitipie sampling/update rates for the compensator. but thev must aiso
Jetermune the parameter vaiues for a time varving compensator.

We wiil consider three methods which can be used to design muitirate compensators:
Muldrate LQG [1]; Generaiized Algorithm for Multirate Synthesis (GAMS) [17]; and our
new method presented in this paper. All three of these methods synthesize linear
compensators by minimizing a cost function quadratic in the states and controls.

Multirate LQG is the multirate equivaient of singie rate LQG. The muitirate LQG
problem is straightforward to solve because the equations governing the solution are similar
to those for the singie rate case so that most methods used to soive the singie rate LQG
problem can be appiied to muitirate LQG. The disadvantage of muitirate LQG is that it
results in a tull order compensator which has periodically time varving gains.

GAMS was developed by Yang to overcome many of the short comings of muitirate
LQG. Yang's algorithm can synthesize reduced order muitirate compensators with or
without time varying gains by using a numericat gradient type search to find the optimum
compensator values. His algorithm uses a finite time cost function in its problem
formuiation. uniike muitirate and single rate LQG which use an infinite time cost function.
By using a finite time cost function Yang's algorithm eliminates the numericai problem that
arises when a destabilizing compensator is encountered during the numerical search since
the value of the cost function is infinite at infinite time when the closed loop system is
unstable. The primary benefit is that the designer does not have 1o provide the numerical
search algorithm with a inidal stabilizing guess. Unfortunately, using a finite time cost

funcuon gready compiicates the equations which govern the soluton, making them
laborious to soive.
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)

We have been using Yang's algorithm to soive muitirate probiems tor the iast two years
and have found that the flexibility afforded by a finite time cost funcuon is not needed to
solve most muitrate proolems. For this reason we have deveioped a third method for
svnthesizing muinrate COmpensators.

Our new algorithm 1s similar to Yang's (GAMS) in that it can be used to synthesize
~educed order muitirate compensators with or without ume varyving gains: but uniike
Yang's algorithm we use an infinite time cost funcuon in the problem rormuiation. The
advantage of this new approach is that it resuits in a set of relatively simpie governing
equatons which are closeiy reiated to those for the singie rate case.

In this paper we will present our new algorithm. In Section I we discuss the structure
of the general muitirate compensator. In Section iI we develop the equatons which govern
the soiution of the reduced order muidrate compensator. Section III contains a brief
iiscussion of how we impiemented our aigorunm. In Secuon [V we present a simpie
muitirate exampie followed by some conciuding remarks in Section V.

I. THE GENERAL MULTIRATE COMPENSATOR

Before deriving the equations governing a reduced order muitirate compensator, we
will first present the structure for a generai muitirate compensator. We restrict our
discussion for now 1o compensators with time invariant gains and sampiing/update rates
whose ratios are ragonai numbers.

A general muitirate compensator is shown in Figure 1. Each input (y), output (u), and
state {Z) is sampied/updated at a rate which. in generai. represents the desired bandwidth of
the input or output with which it is associated. ¥ is the value of y currentiy available to the
digital processor from the zero order hold: while u is the current output trom the digital
processor which is held with a zero order hold to form the output u. When the
sampling/update rates have ratios which are rational numpers the sampiing schedule is
periodically time varying. The greatest common divisor of all the sampling/update periods
is the shortest time period (STP); the least common multiple of all the sampling/update
periods is the basic time period (BTP) (see Figure 2).

The state equatons for the muitirate compensator pictured in Figure | are:

,'i\ {[I-sz,k}ﬂz,kx S2.kBI-Sy k] 0 1 . | s.xBSvk |
\2 f - 11 0 [L-sy.x 0 vy osve o lye@
4 Tt lL suxC sukD{I-syx]  [T-sux] | Uk SuxDSy.k
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12

Uy =‘_Su‘kE Su.k_D—LI'Sy,k:} II Su'k-”w

el N1
P

; *‘:Su,kﬁsy,k:t Yk (2)
k

Tis a hold state used to model the sampier and zero order hold betweenu and u. s, s, .

ind s, are switching matrices for y, Z, and u respectivelv that model the system's
sampiing/update acavity at the start the k@ STP. s. y has the form:

r 0 0 0 %

0 1 0 0

ek = i
0 0 tma 0

0 0 0 rtm, |

,’1 if the j*h “«” (Z, y, or u) is sampied/updated
at the start of the k!h STP

where rj

10 otherwise

m,, = the number of states (Z)
m,, = the number of inputs (v)

m,, = the number of outputs (u)

A more compiete discussion of this compensator structure can be found in [17].
Equadons (1) and (2) can be written more compactly as:

Zeel = ArZg + Byyy 3)
Uk=Cka + Dkyk (4)

a

Z
A

Equations (3) and (4) form a single rate periodically time varying system with a
sampling rate of one STP and a period of vne BTF. [ N=BTF/S

Lr/oTP. then Ak = Ak+N'
By = Byyne Ck = Cyyne @nd Dy = Dy .

where zy =
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Even though A,, By, C; and D, are periodically time varying, the muitirate
ompensator has ume invariant gains. The periodicity of the multrate compensator is due
:0 muitirate sampiing/updating not the compensator gans. In the remainder of this section

we wiill demonstrate how the time invariant compensator gains. A, B. C. and D can be
separated from the penodic compensator matrices Ay, By, C, and D,

Define the composlie COmMpPensator matrix as

"Dy Cx |
Py = ! 5
k=l By Ax J )
and factor Py as tollows:
P =Sy PSay = Say (6)
where .
D Ci
P=t_ _ | (7)
B Al
1 Su_k O
Six = 0 sex (8)
0 0
Su'k O
[s 0 I-sy 0
SZk=E ’(')‘k S ) ]1 9)
1’ 0 0 0 I-sy,
Sy=) O Isaxe 0 0

0 0 0 I-Su.k_j

Equation (6) is a key resuit. It allows us to factor the time invariant compensator gains,

the unknown parameters we will solve for in Section II, out of the time varying
compensator.

It is important to note the difference between Py and P in (6). P, (with a subscript) is a
periodically ime varying marrix defined by (5). It includes all the information about the

compensator gains and the sampling/update schedule. P (without a subscript) is a constant
matrix which contains only the gains for the compensator. P, can be written in terms of P

and Sy, Spy, and 84y, equation (6), where 8, Sy, and S, are periodically time varying
matrices which contain a description of the sampling scheme.
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[I. DERIVATION OF REDUCED ORDER MULTIRATE COMPENSATOR

In this secuon we wiil use tne resuits of Secuon i to derive the equauons governing the

-educea order muitirate compensator. The muitirate problem to be soived is as rollows:
Gsiven: the system

T{k.‘.] = ’E—\“ik + GG\( + CVW!( (11)
Vi = Hxy + vi (12)

-~

where . G. W and H are obtained by discrenzing the analog plant matrices at one STP;
ind where wy_and v, are discrete-ame gaussian wiite noise inputs.

Find: the muitrate control law with a prescribed order and sampling schedule, of the
‘orm ot (1)-(2), which minimizes the quadratic cost funcuon of the torm:

o \

J= i iE!"““”ﬁ QM

J i_ M Qy J‘Uk'[ (13)

1
8
~
c
E

E is the expected value operator, and the summaton from 1 to N accounts for the fact that
the closed loop system is periodicaily time varying. A prescribed sampling schedule implies
that the values of s, 4, Sy, and s, y are known. Sampie schedule selecton is discussed in
{4] and is the subject of future research.

When we write (1)-(2) as (3)-(4) it is easy to see that this problem is essenunally 2 tme
varying feedback problem - a time invariant plant with a periodically time varying
compensator. What makes this probiem difficuit is that the tme varving compensator has
an explicit form., that of (1)-(2), in which only certain parameters. A, B, C, and D. can be
adjusted to minimize J.

To solve the muitirate control problem we cast it into ourput feedback form and follow a
derivaton similar to Mukhopadhyay's for the singie rate case {12], [14]. Using (1)-(2)
written as (3)-(4), and (11)-(12) we wnite the output feedback equatons:

{iw\:[? o”jjik\rr'a 0}[ Ui \ﬂVv o"% Wy } 18

0flzem | 00 ¥

’?k‘__. ?{0 ’ik\"_'o I] Wi | (15)
\Zk’ 00 zk‘ L0 0Jt vk
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J Hk \z:’ D‘( Ck },Xk\ (16)
\ Zi+l { . B Ak J‘ Zx ‘
Equanons (14)-(16) can be writen more compactly as
xk+l = ka + Guk + Wnk (17)
Yk = Hxy + VN (18)

[t is important to keep in mind that P, in equaton (19) corresponds to the P, in equation
'3), a pentodically ame varving matrix which contains ail the informauaon about the muitirate
compensator gains and samviing/update rates.

The closed loop svstem 1s

Xl = FekXi + GekMk (20)

where
Fek = F + GPH (21)
Gk = W + GPH (22)

The state covariance propagation for this system obeys the following equation:

Xia1 = FaXiFd + GaRGy (23)
where

X = Elxixf)
R = E{nin{)

Equanons (20)-(22) represent a periodically time varying system with a period of N.

We can generate a singie rate system by repeated application of equation (20) over one BTP
(11]. The singie rate system can be written as

Xk+N = Fokxg + GukTok (24)
where
r Fok = FeaeaN-1)FekeN-20F ckeN-3y - - Fex (25)
Gk = FekeN-1"FekanN-2) * Fekr1)Gex | (26)
FetkeN-1)Fc(keN-2) - Fetks2)Getkety | -+ | Gean-1)]
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M
Mok = m(;’rl

_ Mk+N-1

This singie rate system has exactly the same values for x as the periodicaily time
varying closed loop system at each BTP. However. the vaiues of x at the intermediate
STP’s have been lost because x is incremented bv N in (24) but only by 1 in (20). There
are actuaily N such single rate systems associated with (20). They can be wrinten as:

XkeN+i = FokeiXicei + Goeai)Tlksi for i=1.2....N 2N

[f Fi is stable. then the periodically time varying system (20) is stable {9]. We can

-alcujate the steady state covanance tor x using the following Lyapunov equanons:

Xi = FuXkF Ly + GreRpGry  for k=1.2....N (28)
RO.-.0
Ry={ O R:+- 0
000R

Note that the covanance of x is periodic, that is the covariance varies within one BTP,
but from BTP to BTP X,. = X, . Once we have caiculated the steady state covariance for

Xy at any k using (28), we can use (23) to propagate the covariance over the BTP. This
eliminates the need to soive equaton (28) N times.

Now, using (23) and (13) and the propertes of the Trace (Tr) operator we can write the
cost funcaon for the stabilized system as

N -
I= Y Tr{{Qi + MPH + (MPH)T + (PHTQPH Xy + (PVITQPVR] (29
k=1

Adjoin the constraints to the cost J using Lagrange multpliers. Ay, to obtain:

N -
T= Tr{{Qq + MPH + (MPH)T + (P HTQoPHIX, + (P VITQP VR
k=1 - ’ (30)
T
+ Ak+l[FckxkF::rk + GexRGY - an]}

Wlth Xl = XN+]'
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The necessary conditions for minimum J are

A0 o and &= 31)
aXy IAk+1 oP
s 9% , o -
[n addigon. 02 must be posiave definite ror a minimum J.
a

Subsumang (30) into (31) and repiacing P, with Py=5,,PS~ +S,, from (6) we obtain:

8_31_ =0 =Qq + MPH +(MPH)T + (PtH)TQ2PiH + Fli A1 Fex - Ax
Xy (32)
for k=1.2,....N with Ak = Ak-&-N
- OJ = () = FCkaFZk + GCKRGZK - Xk+l
dAys) (33)
fork =1.2...N with Xy = X,
£=o=ziﬂk{[Q.+GTAMG]Pk[mckHT+VRVT]
oP =1 - (34)

+{ MI+GT A FIXHTI ST,

Equanons (32)-(34) are a set of coupled equatons. two sets of Lyapunov equations and
one Riccau equaton, which make up the necessary conditions for which P. the multirate
compensator gain marrices A, B, C, and D in equation (1)-(2), wiil minimize the cost
function J. The vaiues of A. B, C, and D found by soiving (32)-(34) can be substituted
into (1)-(2), along with the definition of the sampling schedule. s, K Sy and Sy 10 form
the complete ume varying muitirate compensator.

To ensure that the compensator gains satisfying (32)-(34) minimize J, we must also
check that the hessian of J with respect to P is positive definite. In our present algorithm,
we do not caiculate the hessian explicitly, but use an approximate vaiue caiculated by the
numerical search algorthm discussed in the next section.

Equations (32)-(34) were derived assuming time invariant compensator gains. We can
easily derive the equations for periodically time varying gains. so that A, B, C, and D in
equaton (1) are periodic. Let

A=A;,B=8;,C=C,andD=D; (35)
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with the restricdon that Kj-N =A. BN = 1_3__;. Cn= Ci,and Din=D
10 that
_ 7B T
P= PJ. = ___‘ _ (36)
_ B AL
Then repiace P with P; and differentiate ( 30) with respect to P; to obtain
LL ST Qu+ G A1 G Py HXHT+ VRVTI
oP; o ‘ 37N

~ MT+GT A FIXHT} ST, forj = 1.2..N

Thus ror every new set ot compensator gains we add one new equaton ot the form of (37).

Equauons ( 32)-(34) are very similar to the single rate equauons. In fact. if we set N=1
and S,y and S~y equal to the identity matrix we obtain the exact resuits derived by derived
by Mukhopadhvay tor a singie rate case {12].

III. IMPLEMENTATION

In order to determine the reduced order muitirate compensator which minimizes the cost
function J, we need to solve (32)-(34). A numerical gradient-type search aigorithm was
impiemented in MATLAB [16] to soive these equatons. A flow chart of the aigorithm is
shown in Figure 3. The equatons necessary to soive for the Lagrange muitipliers, (A.3)-
(A.4), are located in the Appendix.

The algorithm automaticaily discretizes the analog plant. weighting matrices and
process noise covariance matrix. Refer to {3] for a discussion of the relevant discretization
procedures. To ensure that the solution represents a minimum J, the algorithm checks that
the hessian of J with respect to the free parameters in P is positve definite at the solution
point.

Because (32)-(34) are not valid when the closed loop system is unstable. the numericai
algorithm 1) must be provided with an initial stabilizing compensator. and 2) must resuit in
a stabilizing compensator at every iteration of the opumization. In our experience, finding
an inital stabilizing compensator is generaily not a problem using successive loop closures
[4]. To avoid the probiem of destabilizing compensators during the iteration process we
included a check in the algorithm which systematically reduces the step size to ensure the
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compensator 1s stabilizing. Because the gradient of the cost function with respect to the
Jompensator parameters becomes very large near the stability boundary. the aigorithm is

llways rorced back towards a stable solution as long as it never steps over the stability
soundarv 1nto an unstable region.

[V. TWO LINK ROBOT ARM EXAMPLE

\We used a math model of a two link robot arm ( TLA) to demonstrate the capabilities of
our aigonthm. This is the same model used by Yang, and so we were able to verify our
resuits by direct companson. A diagram of the TLA is shown in Figure 4.

The goal of our design was to control the tip position (3) of the arm via a muitirate

compensator. We used the following analog weighting and process noise covariance
—amees mom | 177.

(38)

We assumed perrfect measurement and that plant disturbances enter the system
coincident with the control torques. For the muitrate compensators, 6 was sampled and T,
was updated every (.225 seconds: & was sampied and T~ was updated every 0.028125
seconds.

Five different compensators were designed: an analog LQR, a muitirate icad/lead, an
optimized multirate lead/lead. an optimized muitirate general 2" order. and an optmized
single rate generai 2" order. We used a smooth step input to O, and 6_.¢ defined as
follows:

0.005{1 - cos(ﬁ\ 1< T,
Sref(t) = L T.)
0.01 t2T,
(39)
Oref(t)
Bref(t) = Litls’ Te =0.125 sec
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and the servo contiguraton shown in Figure 3 to measure the pertormance of the different
compensators {17]. The response of the TLA for the five compensators is shown in
Figure 6.

The anaiog LQR compensator used simpie full state teed back. We provided this
compensator as an exampie of the response possible using the cost function weighting
matrices of (38).

The muitirate lead/lead was found using successive ioop ciosures. We designed the
controi loops 1n the discrete domain so that the eigenvaiues of the ciosed loop system

matched those we obtained using LQR transformed to discrete time. This compensator
consists of two simple lead loops: one from 6 to T, operating at the fast sampling/update
rate, and one from 8 to T, operating at the stow sampiing/update rate.

The final three compensators were synthesized using our new algorithm and the cost
velghung marrices used to design the anailog LQR compensator. The opumized muitirate
lead/lead was found by opumizing the pole/zero locatons and gains ot the lead/lead
compensator found by successive loop closures.

The oprimized muitirate generai 2" order compensator uses the same sampling/update
scheme as the lead/lead compensators but has the compensator structure of (40), where a;
bij' Cij» and dij are the parameters which were optumized. This compensator has the

maximum number of independent free parameters possible for a second order system.

R=f 2 0] ﬁ{ 1 btz} o[ o o] paldn dul
0 axn by 1 €21 C22 L dar d22

The optimized singie rate generat 29 order compensator is a single rate equivalent of
the muitirate generai 2" order compensator. It has the same structure as the muitirate
generai 2" order compensator, (40), but uses a single sampling rate which was chosen
such that the number of computations needed to impiement either the muitirate or singie rate
compensators are the same.

Our resuits are the same as those obtained using Yang’s algorithm. They demonstrate
how muitirate compensators can provide better performance than singie rate compensators
by trading lower bandwidth controi of the siow modes for higher bandwidth control of the
fast modes. In this examplie we were able to reduce the tip response over shoot 40% and
the peak contol torque 25% by using a muitirate controller over a single rate conuoller.
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V. CONCLUSION

In this paper we have presented an aigorithm that can be used to syntnesize reduced
order muitirate compensators with or without periodicaily time varving gains. Our
:igonthm is sirmuiar to that deveioped by Yang, except we use an infinite ime cost functon
.n order to simpiify the equations governing the soiution. One advantage to this approach
'5 that the expression tor the gradient of the cost is reiativeiv simpie, making the numerical
search algonthm more efficient. The disadvantage of this approach is that an inidal

stabilizing compensator 1s required. However. for most cases a stabilizing compensator
:an be easiy obtained using successive ioop closures.
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(10]

(11]
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APPENDIX
A. Calcuiation of the Values of the Lagrange Multiplier

Given a Py which stabilizes the muidrate system we can calculate the steady state values
of A, where A, is defined by equation (32) rewritten here as (A.1).

0 =Qq + MPH + (MPH)T + (PH)TQ2PiH + FL Ak iFek - Ax

(A.D
for k=1,2,...,.\1 with Ak = [\ki'N
First simplify (A.1) by defining
‘ M | :
Q3= Q . and Jyx =i I (A.2)
!_ MT Q | . PxH |
[ is an identty mawix
Then (A.1) can be written as
A = JKQsJ + FhApaiFac for k=1,2,...N with Ay = Ay, N (A3)

Equadon (A.3) represents a periodically time varying Lyapunov equation. We can
create an equivalent singie rate system by repeated appiication of (A.3).

A = T5Qulak + FjpAkFax for k=1.2,...N with Ay = Ay, (A4)
Fak = FeeaN-1)FeeN-2)F ckeN-3y - - Fek (A.5)
Jax = [TaeaN-1)FckaN-2FeksN-3) - - Fei | (A6)
JeaN-2)FckeN3y - Fex| -+ | X ’
QGO0
Qe 900
00 0Qs)
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Equanon (A.4) is a ume invariant Lyapunov equadon which can be soived for Ay.
Once any A, has been found. the propagauon equation (A.3) can be used to find the
emaming Ay.
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Figure 5. Plant/Compensator Configuration
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[. INTRODUCTION

There ure -many esiablished methods for synthesizing muitrate compensators (Berg,
Yang, Mason. Glasson. Amut] but surprisingly few methods for anaiyzing the robustness
of these svsterns. Current robustness anaiysis methods rely principaily on the transfer
‘uncuon of the system. A muitirate ransrer funcuon. in the traditionai sense. does not
axist. because most muitirate systems are periodically time varying. Without some
modification. established anaiysis methods cannot be appiied directly to muitrate systems.

[Thompson| and {Apostolakis] have both proposed ways t0 extend exisung robustness
analysis techniques to muitirate systems. Thompson used ‘“Kranc” operators to transform a
speciai class of muitirate systems. derived from sampled contnuous systems. into MIMO
single rate systems. Apostolakis wanstormed the general muitirate system into a discrete
-me singie rate MIMO system and then used impuise modulation to produce a conunuous
M IMO system { Bovkin's]. In both cases. the inputs and ourputs or the new MIMO system
were comprised of delayed sampies of the inputs and outputs of the muitirate system.
Thompson and Apostolakis then used muitivariable nyquist criterion and/or unstructured
singuiar vaiue analysis to caiculate the gain and phase margins for the muldrate system.

In this paper we wiil present an aiternative approach for extending nyquist criterion and
singular value analysis to multirate and periodically time varying systems. Like
Apostolakis, we ransform the original system into an equivalent ime invariant singie rate
system. However, we perform the robusmess analysis in the “z” domain. By working in
the “z” domain we can establish relationships between a multirate/periodicaily time varying
system and its time invariant single rate equivalent. These reiationships clarify the
limitations of nyquist and singular vaiue anaiysis using single rate equivalent systems.

The paper is divided into five section. Section I provides some back ground
information about multirate systems and discusses transfer functons for muitirate and
periodically ime varying systems. Section II discusses the application of the nyquist
stability criterion to these systems; Section III discusses the application of structured and
unstructured singular values analysis to these systems. Section IV contains a exampie of

robustess analysis using structured singular values for a multrate system. Concluding
remarks follow in Secton V.

I. MULTIRATE AND PERIODICALLY TIME VARYING SYSTEMS
Before discussing robusmess analysis we will first establish the relationship between
multirate and periodically time varying systems. Then we wiil define an equivalent single
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2

rate system which wiil allow us to combine periodicaily time varying, muitirate and time
‘nvariant systems using raditonai block diagram techniques.

A generai muitirate COmpensator is Shown 1n Figure i. Each input (y), output (1), and
state (7) is sampied/updated at a rate which, in generai. represents the destred bandwidth of
the input or output with which it is associated. ¥ is the value of y currentiy avaiiable to the
digitai processor from the zero order hold: while  is the current ourput trom the digital
orocessor which is held with a zero order hold to torm the ourput 4. A discussion of this
-ompensaror sructure can be found in [Berg & Mason. and Yangj.

Associated with this muitirate compensator 1s a multirate sampling schedule which
specifies the sampling/update rate for each input. ourput and state. We define the greatest
-ommon divisor of all the sampiing/update periods as the shortest time period (STP) and

the least common muitpie of all the sampiing/update periods as the basic rime period
'BTP). The integer NV is definea as:

=BTP
N TP )

When the sampling/update rates have ratos which are ragonai numbers, the
sampiing/update schedule is periodically time varying and the multirate compensator can be
modeled as a linear periodically time varying system of the form {Mason & Berg}:

x(k+1) = A(K)x(k) + B(k)u(k) )
yk) = C(k)x(k) + Dk)u(k) (3)
where A(k) = A(k+N), B(k) = B(k+N), C(k) = C(k+N), and D(k) = D(k+N)

The sampling period for (2)-(3) is one STP and the period of repeuton is one BTP.

Any practical muitirate system can be modeled as linear periodically time varying
system of the form of (2)-(3). Therefore, we wiil focus the remainder of the discussion on
linear periodically time varying systems, of which muitirate and single rate are a special
case.

Given a periodically time varying system of the form of (2)-(3), we can create an
equivalent tme invariant system by repeated application of (2)-(3) over the BTP [Meyer &
Burrus}. The equivaient time invariant system 1s

x(N(k+1)) = Ax(Nk) + Bu(Nk) 4)
Y(Nk) = Cx(Nk) + Du(Nk) (5)
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3
A = A(k+N-DAk+N-2)---A(k) (6)
B =i AN-DAN-2) - ABD | AN-DAN-2)--ABBQY | -+ BIN] (T
1 C(1)
o C)A(1
C = ): ) 3 8)
_C(N-DAN-2)---A(1) |
- D(1)
C(2)B(1)
D =i C(DA(2)B(1)
_ C(N-DAN-2)- - -A(2)B(1)
0 0 0o
D(2) o
C(3)B(2)) 0 0o . ®
; D(N-2) 0o
C(N-DAN-2)- - -A(3)BR2) - CIN-DB(N-2) D(N-1) ]
yWNK) 7 u(NKk)
where 5V =1 YD and GV = “(N’f”)\‘ (10)

| y(Nk+N-1) u(Nk+N-1) |

Equarions (6)-(10) transforms the linear periodically time varying system. (2)-(3), with
p inputs. g outputs and a sampling period of one STP to a linear ume invariant system. (4)-
(5), with Np inputs. Ng outputs and a sampling period of one 8TP. We wiil refer to (4)-
(5) as the equivalent single rate system ( ESRS) of (2)-(3). It is important to keep in mind
that the inputs and outputs of an £SRS are comprised of sampies of the inputs and outputs
of a time varying system. A consequence of this is the reiationship:

51, =l (1)

We can calculate the transfer function of (4)-(5) using the following definidons for the
Z Transtorm. Let

ZGek))=3 x(ire (12)

i=0
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4
Zn(x(k))=Y i)z (13)
=0
en
vz = Zn(y(k+) (14)
T Zay(o))
~ Znly(k+1 !
ZNMy(k+N-1)} ]
with a similar definidons for uzY) and u(zV.}).
The wansfer functon for the £SRS, (4)~(5), is
T2y = Gz (16)
where Gn(z¥)=CUzN-AY'B+D un

The transfer function is written as Gy (z¥) to emphasize that the sampiing period of the
ESRS is one BTP. or N times the sampling period of the ume varying system (2)-(3).
So far. the ESRS has only been applied to periodically time varying systems.. We

could. however, calculate the ESRS of a time invariant system - in this case N can be any
integer.

The transter function for the £SRS of a time invariant system can be caiculate using

(17). Alternatvely, Gn(z") can be caiculated directly in terms of the transfer function of
the time invariant system, G(z). Given

y(2) = G(2)u(z) (18)
and following [Mevers & Burrus| we can write

N-1

y@) =, 2y @D (19)
=0
N
y(zN.1) = [%J- 24y ¢y @eh (20)
i=0

L]
where ¢ =e*

Combine (18)-(20) to obtain
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5
1 AR -(l-m) ;
vV = =7 Y g G (zg Yu(zV m) 1)
N~
=0 m=v
From (15) and (21) the ## row and m** coiumn or Gy(z") is given by
1 & itm :
Gy @Y Vim = 3 20 Y 0" Gze) (22)
/ =

For a nme invanant system. Gy (z+) is made up of time and frequency shifted versions
of G(z). A special case of (22) occurs when G(z¢") = G(z) fori = 0,1,....V-1.

If G(z0) = G(z) fori=0.1,...N-1 then GN(an,,,,::fG(OZ) OE;i;’i’;e (23)

The simpiest G(2) satisfying (23) is G(z) = constant. Equanon (23) is an important
-eiagonsnip whnich wiii be used in Secoons il and HI.

Equauons (6)-(10), (16)-(17) or (21) can be used to compute state space and transter
functon descriptons tor the £SRS of a periodicaily ime varying or ume invanant system.
The advantage of the ESRS is that is it allows us to manipulate tme invariant and
periodically time varying systems (e.g. muitirate) as if they were both time invariant. The
state space or transfer functions descriptons can be used to caiculate input-output relations
for systems in series or in a feedback loop just as in classical control {Khargonekar]. In
addition. {Kono] has shown that if the ESRS is stable then the tme varying system from

which it was derived will be stable. So, we need oniy worry about the stability of the
ESRS.

II. NYQUIST STABILITY CRITERION
We can determine the stability of the periodically time varying system in Figure 2 by
applying standard muitiloop nyquist (McFariane ...] criterion to the ESRS. since the

periodically time varying system will be stable if its ESRS is stable. The £SRS return
difference 1s given by

[ - Gn(zMAN(ZY) 24)

and the nvquist contour is
N=ei® 0Sw<2n
When the periodically time varying system is SISO, we can determine traditional gain
and phase margins from the nyquist plot. Recail that when A(z¢[) = A(2), AN(zN )isa



Multirate Robusmess Analvsis DRAFT 3/15/91

diagonai transter functon matrix with A(z) on the diagonai. Thus. the £SRS for Figure 2

-vith gain and phase uncertinty can be wrntten as
G:V(z’\()acxu.cu = GN(Z“"‘) rzommalINxN"ele (25)

Phase and gain margins {rom tne nyquist piot can be interpreted in the raditionai sense
>ven thougn the £SRS is MIMO because the inputs and outputs are correiated in ume and a
constant gain appiies equally over ail ime. {Thompsonj armved at this same resuits using
Kranc operators.

When the time varving system is MIMO. the standard MIMO nvquist restrictions apply.

For MIMO time varving systems. it is best to use a norm based approach such as singular
value anaivsis.

[II. STRUCTURED AND UNSTRUCTURED SINGULAR VALUES ANALYSIS

In the previous secton we saw that the muitiloop nyquist stability criterion can be
appiied to an £SRS to determine the stability of a periodically time varying system. In this
secton we will see that, with some limitations, both structured and unstructured singuiar
value analysis can be applied to the ESRS to determine the robustness properties of a
periodically time varying system.

Given stable transfer functions G(z) and A(z) it has been shown that the ciosed loop
system wiil remain stable through out contnuous changes in A(z) if

det ([ - G(2)A(2)) #0 (26)
or g/ -G(2)A(Z) >0 @n

is satisfied around the nyquist contour, subject to certain restriction on Gz) and A(2)

[Maciejousky....]. By direct application of (26)-(27), a periodically time varying system
will be stable if

det (I - GN(zZMYANEY) 20 (28)
or ol - GNEMAN(GEZV)) >0 (29)

is sausfied around the nyquist contour, because a periodically time varying system will be
stable if its £SRS is stable. From (28)-(29) it follows that most singular vaiue robustness
tests can be applied directly to a ESRS to determine the robustness properties of a
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~eriodicaily time varving system. The resuits. though, must be interpreted in light of the
“act that some oI the inputs and ourputs ot the £SRS are ume correfated. In the following

~aragrapns we wili discuss the important differences between a singie rate system and an
ZSRS and how tnese arfect singuiar vaiue anaivsis.

) There are gN, not q, singuiar vaiues associated with each point on the nvquist
_ontour ror the ESRS of a time varving system with onty q inpwts and outputs. The
iddidonai singuiar values come from the time correiated inputs and outputs of the £SRS.
Remempber that the sampling period of the £SRS is one BTP. N times slower than the time
varving system trom which it was derived: but the £SRS has /V times as many inputs and
outputs as the originai time varying system. Tae key point 1s that ai of these singuiar
vaiues are important in determuning the ropbusmess of a periodically time varving system.

(fan £5RS is generatea from a tme invarnant svstem. the singuiar vaiues ot the £SRS

and the singuiar values ot the onginai singie rate system are reiated by the following
2XDpression.

OGM(eNWy = {O’G( ¢ esoy, 6G(¢ e, ... 5G9 eiw) | (30)

In (30), singular values associated with frequencies above 1/BTP in G(z) are reflected
back to lower frequencies in Gy(zV). It follows directly from (30) that

IGnGv..=iG@. 31)
where {G(z)l.=syp G1G(e/)]

2) The ESRS imposes a structure on any uncertainty A, Any Ay in (28)-(29) must
obey (17) or (22); this automarically imposes a stucture on Ay.. The problem is, we are
often interested in a tme invariant plant uncertainty, A, that destabilizes the system and not
in Ay o(Aw) found using unstructured singular value analysis is often overly conservative
because it accounts for not only the fictitious perturbations normally associated
unstructured singular values but also for time varying and non-causal perturbatons. It is

important to remember that ©(Ay) found using unstructured singular values can be
extremeiy conservative and may not reflex S(A).
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Structured singuiar vaiues provides a mechanism or finding A. For an £SRS with a

-ime invariant uncertainty. A¢z), the definiton of the structured singular vaiue. y, can be
WTITtEN as

Gy "0 if der(d - Gn(z¥)An(zY) =0 forany A € Agp
o8 '\r(z‘ b =\[

— , ; yl . (32)
A A'?%‘G(A(Z)): det (I - Gn(2)AN(2)) =0} otherwise

Aqp is the rorm or the permissible biock diagonai perturbations A: and the structure of Ay
must sausfy equaton (22).
Unforrnately for a general A(z), the structure of Ay(z) is often very compiex and

“inding a good estimate of size of A is difficuit. However, whnen A 1s a constant. as is the
ase for many prooiems.

Ay =diag(a, A, ... A) with N blocks (33)

and stuctured singuiar vaiue analysis can be used to determine A.
When A is a ume varying, but not a functon of “z”, A, becomes

Ay = diag(A(1), AQ), ... AN)) (34)

and has no repeated blocks. Equadon (34) must be interpreted with care - (34) implies that
the vaiue of A(k) is constant over the sampling interval, STP, and changes instantaneously

0 A(k+1) at the next sampling instant. This may not be a good model of time varying
uncertainty.

3) When 4 is a constant then each A block of Ay, can be scaled independently. Using

the block diagonal scaling property of p [Maciejowski], and (33) or (34) it is
straightforward to see that

If A is a p by p matrix then WDGn(zV)D ) = w(Gn (YY) (35)
where D = td11p, dzlp, d_vlp) and / is a p by p identity matrix

In addition if A is block diagonal then each of sub-block of A can be scaled in a similar

manner.

An interesting resuit of (35) is that the upper bound for p(Gy(z")) given by
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UGNz € igf(DGN(zN)D-*) (36)

‘s the same whether A is periodicaily time varying or ime invarant. subject to the
‘nterpreranon of a ume varving A mentioned in item 2. The upper bound for the time
.nvariant case found using (36) is of course more conservauve.

1) Singuiar vaiue piots of ESRS transyer funcrion matrices shouid not be interpreted in
the frequency domain. The ESRS has ume correiated inputs and outputs. The response
‘rom one input to one output represents only part of the total signai berween the input and
ourput of the periodically time varying system.

A meaningrul quanuty for an £SRS is its infinity norm. From (11) and [Francisj we
;an write tat

5., b,

Sup W = sup “-“-IT; ={GnGN, forfiull, < = 37

Thus, HGN(zN)“_ can be interpreted as the maximum gain of the system for all 4 with a

bounded two norm, just as in the single rate case. For the singie rate case the maximum

gain occurs when u is sinusoidal - this is not necessarily true for the periodically time
varying system.

Singuiar value anaiysis of an £SRS. both structured and unstructured, can be used to

determine the robustness of periodically time varying system. As we have discussed, there

are limitadons to this analysis because the inputs and outputs of an ESRS are time
correlated.

IV. TWO LINK ARM EXAMPLE
The results of the previous sections will be illustrated by calculating the gain margins
for a planar two link robot arm (TLA) using structured singuiar vaiues. Two different cases
are considered: 1) the TLA with a 2" order muitirate compensator and 2) the TLA with a
2nd order single rate compensator.
The TLA is shown in Figure 3 and is described further in {Berg and Yangj. The two

compensators were designed to minimize a cost function quadratic in the states and controis
using the optimizarion method described in {Mason & Berg].
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The 274 order muitirate compensator uses the compensator structure of (38), where a:,

5. Ci.n and d.; are the parameters wiich were opumized.

:=; a0 F=, | D21 S Cit Ci2 |

T 21 pof e du i3
0 a2l _ bay 1 o Croe22 )

. dpy da2

The sampiing/update rates tfor the compensator are listed in Table 1. In addition the
ompensator state associated with 8 and T, is updated at the slow rate while the state
1ssociated with 8 and T is updated at the fast rate. For the muitirate compensator STP =
028125.BTP = 225and N =8

W

. | R .
Multirate Compensator | Singie Rate Compensator |

e 0.225 s 0.05's
5 1 0028125 | 0.05 s
T, 0225s ?. 0.05 s
T, | 0.028125s 0.05 s |

Table 1. Sampiing/Update Periods for the Compensators

The singie rate 2" order compensator is the single rate equivalent of the muitirate
compensator. [t has the same structure as the 2"d order multirate compensator and
minimizes the same cost function. but uses a singie sampling/update rate. This
sampiing/update rate was chosen such that the number of computations required to
implement either the multirate or single rate compensators during reai-time operation is the
same. The sampiing/update rate for the compensator is shown 1n Table 1.

A block diagram of the TLA. compensator. and output gain uncertainty is shown in
Figure 4. The bock diagram in Figure 4 can be cast into the standard structured uncertainty
model shown in Figure 5 where the gains k, and k, are allowed to vary independently. An

upper bound on the structured singular values for the multrate and the single rate cases was
calculated using the following {Safonovi.

Q) sngaDQD-‘) < Ap(Q) (39)

where Ap(Q) is the Perron-Frobenius eigenvaiue of Q
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For the muitirate case. the £SRS for the piant. compensator and uncertainty was
-aiculated for N = 8. They were combined as shown in Figure 5 and an upper bound for
.. as 7 traversed the nvquist contour. was calculated using (39). A lower pound on the
maximum singuiar vaiue of the gain matrix is given in Table 2.

For the singie rate case an upper bound on W was calculated usiag two different
ethods. First. i was calcuiated directly for the single rate system. ¥V = 1. An exact
-aiue for u can be caiculated because there are oniy two blocks in the uncertainty matrix
‘Doviej. Next. an ESRS was constucted for the single rate case using N = 8. An upper
bound for u was calculated using (39). For the £SRS system. the uncermainty martrix has 8.

2 by 2 blocks. These resuits are summarized in Table 2.

’

Design Gain Margin @ o =+ |

= A ) |

Multirate 2™ Order { 0.535 |
Single Rate 2" Order ‘ 0.513
' Single Rate 2@ Order using £SRS 0.389

E
Table 2. Gain Margins for TLA with Muldrate and Single Rate Compensatar

The two @ estimates for the single rate case illustrate the disadvantage of using (39) to
calculate the upper bound of u for an ESRS systems. Asin the muitirate case. the ESRS
single rate case accounts for periodically time varying uncertainties. resulting in a
conservatve esomate of . See item 3. Section IIL

For the assumed uncertainty model the muinrate compensator was siightly more robust.
even given the conservativeness of the estimate for L. The muitirate compensator is able to

compensate for larger gain uncertainty because it has higher bandwidth control of the
second link than does the single rate compensator.

V. SUMMARY AND CONCLUSIONS

In this paper we have shown how nyquist criterion and singular vaiue analysis can be
applied to muitirate and periodically time varying systems using their ESRS. For SISO
systems, traditional gain and phase margins can be found by direct appiication of the
nyquist criterion to the £SRS. For MIMO systems, structured singuiar values can be used
10 determine the maximum size of an uncertainty. The results of singular value analysis,
though, must be interpreted in light of the fact that some of the inputs and outputs of the
ESRS are time correlated. We pointed out several important resuiting limitations of

96



*{ultirate Robusmess Anaivsis DRAFT 3/15/91 12

.inguiar vaiue anaiysis using an £5RS. Finaily we demonstrated robustness anaiysis for a

-x0 link arm With a muitirate compensator using structured singuiar vaiue.
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) APPENDIX _
Lemma: oGn(eN®) ={0G(0 e), 6G(¢'e/v), - aG(9" ' eiv)|

Proof: From the definitdon of a transfer function we can write

¥2) = G(2)u(z) (A.1)
- 7 -
0" w9’z |
e’ | W'z |
where y(z) = . LU = . l
. . 1
™ | Lu(e™ ') |
) ) (A2)
GW’n 0 0
~
G(2) =|

0 Gi¢'z) |
. . |

. : 0
t 0 0 0 Gw''y |

N-1

Fromt12), y(z) = z-z"y(zN ,1) so that we can write ¥(z) = Ty(z")
=0

I 407 SR £ B § 1

|
Lyt LNy |
where T = ’ (¢ ’_) ! ' ¢ ’)‘ ! (A.3)

L1 @ @ e
T has the property that TT" = NI if z is evaluated on the unit circie and / is an identity
matrix of appropriate dimensions.
Then
y(zNy = T-'G(2)Tu(zV) so that Gn(zV) = T-1G()T (A4)

Now using the fact that o%(A) equals the eigenvaiues of A"A, and that the eigenvaiues
of a block diagonal matrix are the eigenvaiues of the individual block it follows that

SGMeiN®) =[0G(8°eiv), 6G(g i), - oG(9™ /o) (AS)
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Figure 1. A Generai Multirate Compensator
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Figure 2. Periodically Time Varying System

9




T
.
l

Parameters: Mass Length

L, 1235kg 0965m
Ly 0.163kg 0.167m

Inputs: Torque T; and Ty
Outputs: 0 and &

Figure 3: Diagram ot the Two Link Arm
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Figure 4. TLA Feedback Loop with Output Gain Uncertainty

TLA Plant and
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Figure 5. Structured Uncertainty Model for TLA
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